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1.0  Introduction 
 
The purpose of this guide is to introduce you to using R, a modern, interactive 
environment for statistical computing and research. R in itself is not difficult to 
learn, but just like any new language the initial learning curve can be a little steep 
and you will need to use it frequently otherwise it’s easy to forget.  
 
A few notes about the course and this guide. Although you can use this guide as 
a standalone resource, I recommend you use it in conjunction with the companion 
course website (https://alexd106.github.io/intro2R). The course website contains a 
series of exercises for you to practice your coding and test your understanding of 
key concepts. You will also find R code for the exercise solutions and a plethora 
of links to additional resources. I suggest you work through the exercises during 
the course and encourage you complete these in your own time - you certainly 
won’t learn how to use R by watching other people do it. 
 
In this guide I have tried to simplify the content as much as possible and have 
based it on my own personal experience of teaching (and learning!) R over the last 
15 years. It is not intended to cover everything there is to know about R - that would 
be an impossible task. Neither is it intended to be an introductory statistics course, 
although you will be using some simple statistics to highlight some of R’s 
capabilities. The main aim of this course is to help you climb the initial learning 
curve in a supportive and relaxed environment and provide you with the basic skills 
to enable you to further your experience in using R. There may be times when 
things get a little tough or frustrating (especially for those who have little or no 
experience of using the command line), however try to stick with it, the time and 
energy you invest now will be utterly transformative to your research.  
 
Finally, once you have finished this course, I encourage you to practice what you 
have learned on your own data. If you don’t have any data yet, then ask your 
supervisor or friends for some (I’m sure they will be delighted!) or follow one of the 
many excellent tutorials available online (see the course website for more details). 
My suggestion to you, is that while you are getting to grips with R, uninstall any 
other statistics software you have on your computer and only use R. This may 
seem a little extreme but will hopefully remove the temptation to ‘just do it quickly’ 
in a more familiar environment and consequently slow down your learning of R. 
Believe me, anything you can do in your existing statistics software package you 
can do in R (often better and more efficiently).  
 
Good luck and have don’t forget to have fun.  
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1.1 What is R? 
 
R is a statistical analysis environment initially created and developed by Ross 
Ihaka and Robert Gentleman in 1996. It can be regarded as an implementation of 
the S language, which was developed at Bell Laboratories by Rick Becker, John 
Chambers and Allan Wilks.  
 
R can be used both as a programming language and as a software package which 
you can use to manipulate your data, perform calculations, conduct statistical 
analyses and display graphics. Some advantages of using R include 

 
• R is open source and freely available.  
• R has an extensive and coherent set of tools for statistical analysis. 
• R has an extensive and highly flexible graphical facility capable of 

producing publication quality figures. 
• R has an expanding set of freely available ‘packages’ of routines for 

special or unusual analyses. 
• R has an extensive support network with numerous online and freely 

available documents. 
 
However, for those who haven’t used it before, R may seem rather daunting and 
complex. Whilst the initial learning curve is admittedly a little steep, R offers the 
user a degree of flexibility and control not usually available in other more traditional 
'point and click' statistical software. Undoubtedly, the time invested in learning R 
now will be more than repaid at a later date. Most importantly, learning to use R 
will change the way you think about data analysis. As your analysis will be 
implemented using R code and R scripts you will always have a permanent and 
accurate record of your analytical approach which you can then make available to 
others to facilitate robust and reproducible research practices.  

 
1.2 Installing R in Windows 

 
Most people using this guide will be running R on a computer with a Windows 
operating system (for other operating systems see section 1.3 or the R-project web 
site).  

 
R can be downloaded as a self-extracting file from the Comprehensive R Archive 
Network (CRAN) website at 
 

https://cran.r-project.org/ 
 

Click on ‘Windows’, click on ‘base’ and then ‘Download R 3.1.2 for Windows’ (the 
version available whilst writing this guide). Double click on the downloaded R 
executable file and follow the on screen instructions. Full installation instructions 
can be found at the CRAN website. Although various contributed packages are 
now included with the standard R distribution, you may need to install other 
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packages to perform particular analyses (see section 1.8 for details of how to do 
this). 
 
1.3 Installing R in other operating systems 
 
One of the great things about R is that it’s compatible with many operating systems. 
You can download the appropriate binary for Mac OSX at https://cran.r-
project.org/bin/macosx/. On Bio-Linux, the good news is that R is already installed 
by default so there is no need to do anything! For other Linux distributions you can 
find installation instructions at https://www.stats.bris.ac.uk/R/ and follow the 
‘Download R for Linux’ hyperlink. 
 
1.4  Starting R on a University of Aberdeen network PC 
 
First, log onto the University network using your usual username and password. 
Double click on the Life Science and Medicine folder on the Desktop, then the 
Biological Sciences folder and finally to the Zoology folder. Shortcuts to both R, 
and RStudio (more later) should be visible. Double click on either to start the 
program. 
 
1.5 The R console 
 
In Windows, once you have started R you will see the standard graphical user 
interface (GUI). In other operating systems the layout will vary, but all the essential 
elements are similar. The GUI is rather spartan with a limited number of menu and 
toolbar commands (Figure 1.1). 
 

 
Figure 1.1: The R console in Windows 

Menu bar 

Tool bar 

R console 
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The GUI contains a menu bar and a tool bar where you can access commonly 
used commands. It also provides a console window where your commands will be 
typed at the command line prompt (>). In addition, a graphics window will appear 
automatically when using any plotting function (see Section 4.0 for more 
information) and an R help window will appear when you ask for information about 
a particular command (see section 1.5). Don't worry too much about the R GUI, 
you won't be using it much as you'll be using RStudio instead (see section 1.10).  
 
1.6 R help and support 
 
This guide is intended as a relatively brief introduction to R and as such you will 
soon be using functions and packages that go beyond this introductory text. 
Fortunately, one of the strengths of R is its comprehensive and easily accessible 
help system and a wealth of online resources where you can obtain further 
information. To access R’s built-in help facility to get specific information on any 
named function simply type in the R console at the command line prompt 
 
> help(plot)  
 
Or alternatively 
 
> ?plot 
 
The above example will display help for the function plot() in a separate R help 
window (Figure 1.2). 
 

 
Figure 1.2: The R help window (Windows) 
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The first line of the help contains information such as the name of the function and 
the package where the function can be found. There are also other headings that 
provide more specific information such as 
 
 
Description: gives a brief description of the function. 
Usage:  gives the name of the arguments associated with the function and 

possible default values (options). 
Arguments: provides more detail regarding each argument. 
Details:  gives further details of the function. 
Value:  if applicable, gives the type of object returned by the function or the 

operator. 
See Also:  provides information on other help pages with similar or related 

content. 
Examples:  gives some examples of using the function. You can also access 

examples at any time by using the example() function (i.e. 
example(plot)) 

 
Alternatively, you can use 
 
> help("plot") 
 
This method has the advantage of allowing you to search for help on non-
alphanumeric characters (i.e. {, [, *). If in doubt always use quotes. 
 
In order to search for help in R it is necessary to use the help.search() function. 
For example 
 
> help.search("plot") 
 
or equivalently 
 
> ??plot  
 
gives the following 
 
Help files with alias or concept or title matching 'plot' using regular 
expression matching: 
 
base-defunct(base)      Defunct Functions in Base Package 
glm.diag.plots(boot)    Diagnostics plots for generalized linear models 
jack.after.boot(boot)   Jackknife-after-Bootstrap Plots 
lines.saddle.distn(boot) 
                        Add a Saddlepoint Approximation to a Plot 
plot.boot(boot)         Plots of the Output of a Bootstrap Simulation 
av.plots(car)           Added-Variable Plots 
ceres.plots(car)        Ceres Plots 
cr.plots(car)           Component+Residual (Partial Residual) Plots 
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The name of each entry is given on the left with the corresponding package in 
parentheses. A short description of the function is provided on the right. In the 
above example, the second entry can be displayed by typing 
 
> help(glm.diag.plots, package="boot")  
 
Use the command ?help.search for further details and examples. 
 
Help in html format can be called from within the console by typing 
 
> help.start() 
 
This function launches your web browser and allows you to browse the help pages 
using hyperlinks (Figure 1.3). One particularly useful feature of html help is the 
ability to search the R help pages using keywords and also search individual 
packages (although you can also do this from the R console). 
 
 

 
Figure 1.3: Web browser html help (Windows) 

 
 

An extremely useful function is RSiteSearch() which enables you to search for 
keywords and phrases in the R-Help mailing list and archives and also in R 
manuals, documentation and help pages. This function allows you to access the 
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https://www.r-project.org/search.html search engine directly from the console with 
the results displayed in your web browser (Figure 1.4) 
 
> RSiteSearch("regression") 
A search query has been submitted to http://search.r-
project.org The results page should open in your browser 
shortly 

 
Figure 1.4: results of using RSiteSearch() 

 
Another useful function is apropos(). This function can be used to list all 
functions containing a specified character string (word). For example 
 
> apropos("help") 
[1] "help"          "help.request"  "help.search"    
[4] "help.start"    "main.help.url" 
 
lists all the functions with "help" in their name. 
 
1.7 Other sources of information 
 
There are a large number of resources available online, many of which can be 
found on the R-Project homepage (https://www.r-project.org/). These include a 
searchable RHelp archive, an R Wiki, R mailing lists (can be a bit scary but very 
useful!) and a variety of user-contributed documents (https://cran.r-
project.org/other-docs.html). Some particularly useful pdfs are: 
 
“An Introduction to R” is based on the former “Notes on R” and gives an 
introduction to the language and how to use R for doing statistical analysis and 
graphics. 
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“R for Beginners” by Emmanuel Paradis.  
 
“Using R for Data Analysis and Graphics – Introduction, Examples and 
Commentary” by John Maindonald.  
 
“Simple R” by John Verzani.  
 
“Practical Regression and Anova using R” by Julian Faraway  
 
“R reference card” by Tom Short.  
 
1.8 R packages1 
 
The standard installation of R contains a library of many useful packages. Other 
packages can be downloaded from the CRAN website which currently hosts over 
10000 packages used for various purposes. A list of available packages can be 
found at the CRAN website or by typing (be prepared for voluminous output!) 
 
> available.packages() 
 
in the R console.  
 
To install a particular package use: 
 
> install.packages("name of package") 
 
or if you want to install more than one package : 
 
> install.packages(c("package1", "package2")) 
 
In order to determine which packages are already installed on your system use: 
 
> installed.packages() 
 
and to periodically update your packages use: 
 
> update.packages() 
 
If you are unable to install packages directly, you can manually download each 
package as a compressed file (*.zip) and perform a local zip file installation using 
the menu option. 
 
Once you have installed a package, it can be loaded into R using the library() 
command. For example, to load the package nlme you should enter 

 
1 Some of the functions in this section may not work as expected on the University of Aberdeen 
teaching computers due to permission restrictions. 



 13 

 
> library(nlme) 
 
Be aware that loaded packages (other than those in the base installation) are not 
kept in the R workspace between R sessions. If you restart R you will need to 
reload any packages that you wish to use. 
  
1.9 Working with R 
 
When you begin using R in earnest you soon find that you will want to save the 
results of particular analyses for later reference (further details on this are given in 
section 2.6). When R is installed the default working directory is automatically set 
to the installation folder (or home folder). You can check this by typing 
 
> getwd()  
 
which will display the file path of your current working directory. When you save 
anything in R it will be saved to the current working directory. For most users, this 
is not very convenient, so to change the working directory enter 
 
> setwd("filepath\\of\\new\\directory") 
 
For example, if you wish to change your working directory to ‘D:\R\rdata’ then type 
 
> setwd("D:\\R\\rdata") 
 
Notice the use of ‘\\’ instead of ‘\’. You can also use ‘/’ instead of ‘\’. Indeed, if you 
are working on a mac computer or linux workstation you must use the forward 
slash notation.  
 
1.10 Using an IDE or external script editor 
 
The command line is fine for entering short and simple commands, however, when 
things start to get a little bit more complex you will find using an external script 
editor much easier. There are a number of excellent and freely available script 
editors around (for Windows - Crimson editor, for Mac - TextWrangler or use gedit 
under Linux) but for this course you might want to look at the freely available IDE 
(Integrated Development Environment) RStudio (Figure 1.6). You can download 
the latest version of RStudio for most operating systems from 
https://www.rstudio.com/. RStudio includes a console, syntax-highlighting editor 
that supports direct code execution, as well as tools for plotting, history, debugging 
and workspace management. You can find out more about features offered by 
RStudio at https://www.rstudio.com/products/rstudio/features/.  
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Figure 1.6: RStudio on Mac OSX 

 
The great advantage of using an IDE is that you are able to modify a series 
commands and submit them all at once rather than having to scroll through 
numerous commands you typed in previously. Also, by saving your script you will 
have a complete record of your analysis that you can refer back to. The great thing 
about using R, is that it’s up to you how you want to use it. Give RStudio a go but 
if you really don't get on with it then try an alternative script editor.  
 
1.11 Quitting R 
 
To quit R, simply type q() in the R console at the command line prompt (>). R will 
ask you whether you wish to save the workspace image. For now select no (details 
of how to save your work is given in section 2.6) 
 
1.12 Notation convention used in this guide 

 
A few typographical conventions are used in this guide. These include different 
fonts and styles for urls, and R commands. A series of actions required to access 
menu commands are identified as File | Change dir… (click on File menu and then 
Change dir…). Any text that begins with a ‘#’ will be ignored by R and is used to 
insert comments to help clarify points. R commands are also preceded with a >, 
you do not need to type this symbol into the R console. 
 

Script editor 

R console 

Plotting/help 

Workspace/files 
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1.13 Preparation for the rest of the course and beyond 
 
Perhaps at this point you are beginning to think to yourself – “why am I bothering 
with R, everything seems too complicated, I think I’ll just use my usual stats 
package”. Don’t worry, this is a common reaction, and you won’t be the only one 
thinking it. To be fair, R can seem a little complicated at first and very different to 
most of the software you might already be using. However, in my experience, a 
little perseverance at this point will be more than paid back at a later date by an 
increase in scope and flexibility of your data exploration and analysis and also an 
increase in productivity and efficiency. There are a few things you can do to ease 
the ‘pain’: 
 

1. Keep an accurate and comprehensive record of your work in R. Save script 
files and annotate these liberally (using the ‘#’ character) for later reference. 

  
2. Start using R to explore and analyse your own data as soon as possible 

after completing this workshop. Use R as often as possible. 
 

3. There is a Rhelp mailing list (see the R-Project website for more details). 
However, be sure to have thoroughly searched the existing help archives 
for the answer to your question before you submit a query. You will receive 
very short shrift from the contributors if you don’t. 

 
4. Remember, you don’t need to know everything there is to know about R. R 

is just a tool to help you to answer questions you are interested in, not an 
end unto itself. 
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2.0  Some basics 
 
Before we continue, a few comments about the R language: 
 

• Data, functions, results etc. are stored as named variables. The value of 
any variable can be displayed by typing its name. The value could be quite 
complex, e.g. a table of all your data for the season, rather than just a simple 
number. You can perform operations with these variables with operators 
(arithmetic, logical) and functions, e.g. plot(x). 

 
• R is a case sensitive language. i.e. ‘A’ is not the same as ‘a’ and can be 

used to name different variables. 
 

• Variable names can consist of combinations of letters, numbers, dot (.) or 
underline (_) characters. However, a variable name cannot start with a 
number or a dot followed by a number (i.e. ‘.2myvariable’).  Also, make sure 
you don’t name your variables with reserved words (i.e. ‘TRUE’, ‘NA’) and 
its never a good idea to give your variable the same name as a built-in 
function. One that crops up more times than I can remember is   

 
data <- read.table("mydatafile", header=TRUE) # data is a function! 

 
• Anything that follows a # on the command line is taken as a comment and 

ignored by R. Comments can be included almost anywhere. 
 

• Commands are generally separated by a new line, but can also be 
separated by a semicolon ; 

 
• A series of commands can be grouped together using braces, { } 

 
• A continuation prompt (+) will appear when you hit return but the command 

is still not complete i.e. you forgot to close a bracket when using plot(x  
Just finish the command on the new line and fix the typo. 

 
• You can recall and re-execute previous commands in the R console by 

using the ↑and ↓ keys on your keyboard.  
 
• In general, R is fairly tolerant of extra spaces inserted into commands, 

however, spaces should not be inserted into operators i.e. <- should not 
read < - (note the space). 
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2.1 R as a calculator 
 
One of the simplest tasks you can ask R to perform is to enter arithmetic 
expressions and receive a result. For example 
 
> 2+2 
[1] 4 
 
The answer is of course 4. The [1] in front of the result is R’s method of listing 
numbers and is more useful when you are listing more numbers. The other obvious 
arithmetic operators are -, *, / for subtraction, multiplication and division 
respectively.  
 
There are a huge range of mathematical functions in R, some of the most useful 
include 
 
log() # logarithm to base e 
log10() # logarithm to base 10 
exp() # natural antilog 
sqrt()  # square root 
4^2  # 4 to the power of 2 
3^-1  # 3-1 
pi   # not a function but useful. The number π = 3.1415926 
 
2.2 Assigning values to variables 
 
To assign a value to a variable use the ‘gets’ <- operator1. Specifically ‘gets’ is a 
composite operator comprised of a ‘less than’ symbol < and a minus sign - . To 
assign one value to a variable enter 
 
> b <- 20   # literally b ‘gets’ 20 
 
To display the value of a variable you simply type its name. For example, if variable 
b has a value 20 
 
> b 
[1] 20   # displays the content of b 
 
You can also assign the value of an arithmetic expression to a variable 
 
> c <- 20+20 
> c 
[1] 40 

 
1 You can also use an equals symbol (=) to assign values to a variable. However, be aware that the equals 
symbol also performs other functions depending on the context in which it is used. I prefer to use <- 
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A variable may also contain many values (a vector). These can be assigned in a 
number of different ways. One simple method is to use the function, c, which is 
short for concatenate (literally to link or join together) 
 
> w <- c(2,3,1,6,4,3,3,7) # creates a vector with these numbers 
> w 
[1] 2 3 1 6 4 3 3 7 
 
Sometimes it is useful to create a vector that contains a regular sequence of 
values. To do this enter  
 
> d <- 1:10  # creates a vector of whole numbers from 1 to 10 
> d 
 [1] 1 2 3  4  5  6  7  8  9 10 
 
A sequence of values with non-integer steps can be created using the 
seq()function. 
 
> e <- seq(from=1, to=5, by=0.5) # creates a sequence from 1 to 5 
in 0.5 steps 
> e 
[1] 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
  
To generate repeated values in your vector use the rep() function 
 
> e <- rep(2, times=10) # repeats 2, 10 times 
> e 
 [1] 2 2 2 2 2 2 2 2 2 2 

 
You can also repeat non-numeric values 
 
> f <- rep("abc", times=3) # repeats ‘abc’ 3 times  
> f 
[1] "abc" "abc" "abc" 
 
or repeat a series 
 
> g <- rep(1:5, times=3)  # repeats the series 1 to 5, 3 times 
> g 
 [1] 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5  
 
or elements of a series 
 
> h <- rep(1:5, each=3) # repeats each element of the series 3 times 
> h 
 [1] 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 
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To automatically generate levels of factors you can use the gl() function 
 
> gl(4,3)   # generates a factor with 4 levels with 3 repeats 
 [1] 1 1 1 2 2 2 3 3 3 4 4 4 
Levels: 1 2 3 4 # automatically identifies the level as a factor  
 
2.3 Vector arithmetic and functions in R 
 
Vectors can be manipulated using the same functions described above. However, 
you must be careful when adding or subtracting vectors of different lengths. Some 
examples of vector arithmetic are given below 
 
> x <- c(1,2,3,4) 
> y <- c(5,6,7,8) 
> x*y 
[1] 5 12 21 32 
> y/x 
[1] 5.000000 3.000000 2.333333 2.000000 
> y-x 
[1] 4 4 4 4 
> x^y 
[1] 1 64 2187 65536 
 
Some typical functions used with vectors include mean(),var(), 
sd(),range(),length(),max(),min(), summary(). Some examples of 
these functions are 
 
> y <- c(4,2,5,6,4,3,5,6,7,4,3) 
> z <- 1:11 
> mean(y)   # calculates the mean of y 
[1] 4.454545 
> var(y)   # calculates the variance of y 
[1] 2.272727 
> sd(y)   # calculates the standard deviation of y 
[1] 1.507557 
> range(z)  # give the range of values in z 
[1] 1 11 
> length(z)  # gives the number of values in z 
[1] 11 
 
 
> summary(y)  # produces a table of summary statistics of y 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
  2.000   3.500   4.000   4.455   5.500   7.000  
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2.4 Sorting, ordering and manipulating vectors 
 
You may find you want to extract particular elements from a vector. In order to 
extract a single element use square brackets, [ ], containing the position, or index, 
of the element . For example 
 
> y <- c(4,2,5,6,4,3,5,6,7,4,3) # creates a vector y 
> y[3]    # extracts the 3rd element in the variable y 
[1] 5    # the value of the 3rd element 
 
To extract more than one element, not necessarily in order 
 
> y[c(2,4,6,8,10)]  # extracts the values for elements 2,4,6,8,10 
[1] 2 6 3 6 4 
 
and to extract a range of elements in sequence 
 
> y[3:9]    # extracts the values of elements 3 to 9 
[1] 5 6 4 3 5 6 7 
 
It is often useful to be able to extract elements from a vector using a logical 
condition. For example, to extract all elements greater than 4 in the variable y 
enter 
 
> y[y>4]    # extracts all elements with values greater  
[1] 5 6 5 6 7   # than 4  
 
Other examples include 
 
> y[y>=2]     # extracts all elements with values  
 [1] 4 2 5 6 4 3 5 6 7 4 3 # greater or equal to 2 
 
> y[y!=6]     # extracts all elements with values 
[1] 4 2 5 4 3 5 7 4 3  # different from 6 
 
> y <- c(4,2,5,6,4) 
> y[y>=4] <- 10   # replaces all elements with a value  
> y      # greater or equal to 4 with the value 10 
 [1] 10 2 10 10 10  
 
Vectors can be sorted and ordered using the functions sort()and rev(). 
Some examples are given below 
 
> y <- c(4,2,5,6,4,3,5,6,7,4,3) 
> sort(y) 
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 [1] 2 3 3 4 4 4 5 5 6 6 7 # places all elements in ascending order 
 
 
> rev(sort(y)) # places all elements in descending  
[1] 7 6 6 5 5 4 4 4 3 3 2 # order 
  
Note, however, that if you sort the original variable (y <- sort(y)) that no 
‘unsort’ function exists, so be sure this is what you want to do (you can of course 
assign the sorted values to a new variable y.sorted <- sort(y)). 
 
Sorting a single vector is generally not that useful. More often we would like to sort 
a vector according to the values of another vector. To do this use order() 
 
> height <- c(180,155,160,167,181) 
> order(height) 
 [1] 2 3 4 1 5 
 
To interpret this, let's start with the order(height)output. The first value, 2, 
(remember ignore [1]) should be read as ‘the smallest value of height is the 
second element of height’. If we check this by looking at height, you can see 
that element 2 has a value of 155, which is the smallest value. The second smallest 
value in height is the 3rd element of height, which when we check is 160. The 
largest value of height is element 5 which is 181.  
 
Now suppose the variable height is the height (in cm) of five different people.  
We know the names of these people and can store their names in a variable called 
w.names.   
 
> w.names <- c ("Joanna","Charlotte","Helen","Karen","Amy") 
 
Now we can order the names of the people according to their height 
 
> height.ord <- order(height) # creates a variable of ordered height 
> w.names[height.ord]  # orders w.names using the order of   

# height  
 [1] "Charlotte" "Helen" " Karen" "Joanna" " Amy" 
 
You are probably thinking ‘what’s the use of this?’ Well, imagine you have a dataset 
which contains two columns of data and you want to sort each column. If you just 
use sort() to sort each column separately, the values of each column will 
become uncoupled from each other. By ordering one column and then ordering 
the other column based on the value of the first column you will keep the correct 
association of values. More on this in section 3.3. 
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2.5 The R workspace 
 
All variables created in R are stored in what is known as the workspace. To see 
what variables are in the workspace, you can use the function ls() to list them 
(this function doesn’t need any argument between the parentheses). 
 
> x <- c(1,4,7,3,2,9,7,6,7) # create some variables 
> y <- 1:9 
> z <- seq(1,5,0.5) 
> ls()     # lists variables in the workspace 
[1] "last.warning" "x"            "y"            "z" 
 
Currently we have 4 variables in the workspace: a system variable 
“last.warning” and the 3 variables we created “x”, “y” and “z”. 
 
To remove variables from the workspace (you’ll want to do this occasionally when 
your workspace gets too cluttered), use the rm() function. To remove the variable 
“x” from the workspace enter 
 
> rm(x) 
> ls()    # check whether “x” has been removed 
[1] "last.warning" "y"            "z"   
 
You can (cautiously!) remove all variables from the workspace using 
 
> rm(list=ls())  # removes all variables from the workspace 
> ls()     
character(0)   # no variables in the workspace 
 
2.6 Saving your work 
 
Your approach to saving work in R depends on what you want to save. Most of the 
time you don’t actually need to save anything in R as you have your R code saved 
as a separate script in Rstudio (you have been saving your scripts – right?!). 
Remember your script is a reproducible record of everything you have done so all 
you need to do is open up your script and import it back into the R console 
(copy/paste or sourcing your code). You are now back to where you left off. This 
is extremely useful if you wish to re-run or make changes to your original analyses, 
show your analyses to colleagues for advice or make your script available to the 
scientific community when you publish your ground breaking research. This is 
something that is impossible with the more traditional ‘point and click’ statistics 
packages and is one of the major strengths of R (or any other command line based 
software for that matter). 
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If you want to save the variables you have created with your R code (maybe it has 
taken several days of compute time to generate these objects) then you can save 
all variables in your workspace image using: 
 
> save.image() 
 
This will save your workspace to a file called .RData (in windows) in your working 
directory (you will have already set this to something sensible). You can also 
specify an alternative file name  
 
> save.image("test1.RData")  # saves the workspace as test1 
 
Every time you start R, any previously saved workspace image will be 
automatically loaded. You can manually load a workspace using the load() 
function.  
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3.0  Data 
 
Until now, you have entered data into R as a vector. However, most (if not all) of 
you will have much more complicated datasets from your various experiments and 
surveys. Learning how R deals with different types of data, how to import your data 
into R and how to manipulate your data are some of the most important skills you 
will need to master.  
 
3.1 Classes of data 
 
There are two fundamental types of data in R: numbers and strings. Numbers 
(numeric variables) can be integers, real numbers or complex numbers. You have 
seen how to perform some operations involving numbers in section 2.0.  Anything 
that is not a number is a string. A string is a collection of one or more 
alphanumerics and is denoted by quotes. There are several types of strings, 
including (but not limited to), characters, factors and logical strings.  Each type of 
string has its own properties and uses as you will see later in the workshop (see 
Table 1 for further examples). R is (usually) able to automatically distinguish 
between different classes of data by their nature and the context in which they are 
used (see page 35 for an example when this can go wrong). You can find out the 
class of any variable using the class() function 
 
> a <- c(1,2,3) # generate a variable with some data  
> class(a)  # check the class 
[1] "numeric"   # class is numeric 
 
Alternatively you can ask if the variable is a specific class using 
 
> is.numeric(a)  # performs a logical test  
[1] TRUE   # returns results of the logical test 
 
It is sometimes useful to be able to change the class of a variable using the 
as.[className]() function 
 
> b <- c(1,2,3,4,5)   
> class(b)   
[1] "numeric"   
> b <- as.character(b) # change b from numeric to character  
> b     # have a look at b 
[1] "1" "2" "3" "4" "5" # note the quote marks now enclosing the 

# numbers 
 

> class(b)   # check the class of b 
[1] "character" 
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Table1: functions for testing and coercing the attributes of a variable 
 

Type Logical test Coercing 

Character is.character as.character 
Complex is.complex as.complex 
Factor is.factor as.factor 
Logical is.logical as.logical 

Numeric is.numeric as.numeric 
 
Now that you have been introduced to some of the most important classes of data 
in R, let’s have a look at some of main structures that we have for storing and 
manipulating these data. Perhaps the simplest type of data structure is the vector. 
You have already been introduced to vectors as all the variables you created in 
Section 2.0 were vectors, although some of them were of length 1. Vectors can 
contain numbers, characters, factors or logicals, but the key thing to remember is 
that all the elements inside the vector must be of the same class. In other words, 
vectors are either numeric, character or logical but not mixtures of these types of 
variables. Although vectors are very useful, perhaps the most common type of data 
structure you will use is the dataframe. 
 
3.2 Dataframes 
 
A dataframe is a powerful two-dimensional vector holding structure. Dataframes 
contain rows and columns with the rows referring to different observations or 
measurements and the columns containing different variables. This setup will be 
familiar to those of you who use LibreOffice Calc or Microsoft Excel to manage and 
store your data. The values in the dataframe are not limited to just numbers, they 
can also be characters, logical, dates etc.   
 
For example, the dataframe below contains the results of an experiment to 
determine the effect of removing the tip of petunia (Petunia sp.) plants grown at 3 
levels of nitrogen on various measures of growth. The dataframe has 8 variables 
(columns) and each row represents an individual plant. The variables ‘tip 
treatment’ and ‘nitrogen level’ are categorical and ‘shoot height’, ‘shoot weight’, 
‘leaf area’, ‘side shoot area’ and ‘flower number’ are continuous. Although the 
variable ‘block’ has numerical values, these do not have an order (the plants were 
either grown in block 1 or block 2 which have no order) and could also be treated 
as categorical (i.e. they could also have been called A and B).  You will see why 
this is important later (see section 3.3). 
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Tip 

treatment 
Nitrogen 

level Block Shoot 
height 

Shoot 
weight 

Leaf 
area 

Side shoot 
area 

Flower 
number 

        
tip medium 1 7.5 7.62 11.7 31.9 1 
tip medium 1 10.7 12.14 14.1 46 10 
tip medium 2 11 11.56 12.6 31.3 6 
tip medium 2 7.1 8.16 29.6 9.7 2 
tip high 1 12.6 18.66 18.6 54 9 
tip high 1 10 18.07 16.9 90.5 3 
tip high 2 10.1 15.49 12.6 77.2 12 
tip high 2 8.5 17.82 20.5 54.4 3 
tip low 1 8 6.88 9.3 16.1 4 
tip low 1 8 10.23 11.9 88.1 4 
tip low 2 7.4 10.89 13.3 9.5 5 
tip low 2 3.1 8.74 16.1 39.1 3 
notip medium 1 5.6 11.03 18.6 49.9 8 
notip medium 1 5.3 9.29 11.5 82.3 6 
notip medium 2 3.5 12.93 16.6 109.3 3 
notip medium 2 8.5 10.04 12.3 113.6 4 
notip high 1 8.5 22.53 20.8 166.9 16 
notip high 1 8.5 17.33 19.8 184.4 12 
notip high 2 1.2 18.24 16.6 148.1 7 
notip high 2 2.6 16.57 17.1 141.1 3 
notip low 1 3.9 7.17 13.5 52.8 6 
notip low 1 2.3 7.28 13.8 32.8 6 
notip low 2 5.2 5.79 11 67.4 5 
notip low 2 2.2 9.97 9.6 63.1 2 
        

 
3.3 Importing dataframes into R 
 
Once you have your data correctly formatted you will need to save it to a file format 
that R recognises. Fortunately, R is able to recognise a wide variety of file formats, 
although in reality you will probably only regularly use one or two. The easiest 
method of importing your data is to save your data in Microsoft Excel or LibreOffice 
Calc as a tab delimited file. 
 
In Excel, select File | Save as from the menu and navigate to the folder where you 
wish the file to be saved (Figure 3.1). Enter the file name (keep it fairly short, no 
spaces!) in the ‘File name:’ dialogue box. In the ‘Save as Type:’ dialogue box click 
on the down arrow to open the drop down menu and select ‘Text (Tab delimited)’ 
as your file type. Select Ok to save the file. Your file will now be saved as 
filename.txt 
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Figure 3.1: Saving text files in Excel (Windows) 

 
 
 
In LibreOffice Calc select File | Save as … from the menu and specify the location 
you wish to save your file in the ‘Save in folder’ option and the name of the file in 
the ‘Name’ option. In the drop down menu located above the ‘Save’ button change 
the default  ‘All formats’ to ‘Text CSV (.csv)’ (Figure 3.2).  
 
 

 
Figure 3.2 Saving files in LibreOffice Calc 

 
 
Click the Save button and then select the ‘Use Text CSV Format’ option. In the 
next pop-up window select {Tab} from the drop down menu in the ‘Field delimiter’ 
option (Figure 3.3). Click on OK to save the file.  
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Figure 3.3 selecting field delimiters 

 
The resulting file will annoyingly have a .csv extension even though we have saved 
it as a tab delimited file. Either live with it or rename the file to include a .txt 
extension instead. 
 
Once you have saved your data file in the correct format this file can now be read 
directly into R using the read.table() function. So, to read the file ‘flower.txt’ 
into R on a Windows based computer, enter 
 
petunia <- read.table("D:\\Rcourse\\flower.txt", header=TRUE) 
 
or on a computer with Mac OSX or Linux operating system, enter 
 
petunia <- read.table("/home/Rcourse/flower.txt", header=TRUE) 
 
The above example has read the ‘flower.txt’ file, which is in the directory Rcourse, 
into R, converted it to a dataframe and assigned (using the ‘gets’ operator <-) it to 
a variable called petunia. There are a few things to note about the above 
command. Firstly, the whole file path and the file name with file extension needs 
to be enclosed in quotes (i.e. “D:\\flower.txt”). If your working directory is set to the 
directory which contains the file, you don’t need to include the entire file path just 
the file name. The header=TRUE (which can also be written as header=T) 
argument specifies that the first row of your dataframe contains the variable names 
(i.e. ‘nitrogen’, ‘block’ etc). If this is not the case you can specify header=F 
(actually, this is the default value so you can omit this argument entirely). If the first 
column of your dataframe contains unique row names you can also include the 
row.names=1 argument. Also notice the use of double backslashes (\\) instead 
of the more familiar single backslash (\) in the file path on Windows computers. On 
Mac OSX or Linux you can only use the single forward slash. Two final points to 
be aware of. Firstly, read.table() will fail if there are any spaces in the variable 
names in row 1 of the dataframe. Either keep your column headings as single 
words or replace the space with a dot (i.e. replace 'shoot height' with 
'shoot.height'). Secondly, if you have missing data in your dataframe (i.e. empty 
cells) you must use NA to represent these missing values (if you have used 
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something else you need to use the na.strings="" argument. There are 
additional optional arguments that can be used with read.table() which may 
be useful. Use ?read.table to explore these further.  
 
A number of variants of the read.table()function exist. The most useful of these 
are read.csv, read.csv2. The former assumes that the fields are separated by 
a comma and the latter assumes they are separated by semicolons and that a 
comma is used instead of a decimal point (as in many mainland European 
countries). Further variants include read.delim for reading in delimited files and 
read.fwf for fixed width formats. You can also install the package ‘foreign’ into 
R which will allow you to import data files from many other statistical software 
packages, including SAS, SPSS and Minitab. 
 
To see the contents of the dataframe simply type the variable name (although this 
is rarely a good idea if your dataframe is large) 
 
> petunia 
  
    treat nitrogen block height weight leafarea shootarea flowers 
1    tip   medium     1    7.5   7.62     11.7       31.9       1 
2    tip   medium     1   10.7  12.14     14.1       46.0      10 
3    tip   medium     2   10.4  10.48     10.5       57.8       5 
4    tip   medium     2   12.3  13.48     16.1       36.9       8 
5    tip     high     1   12.6  18.66     18.6       54.0       9 
6    tip     high     1   10.0  18.07     16.9       90.5       3 
7    tip     high     2   11.5  23.89     14.3      101.5      12 
8    tip     high     2    7.7  14.77     17.2      104.5       4 
9    tip      low     1    8.0   6.88      9.3       16.1       4 
10   tip      low     1    8.0  10.23     11.9       88.1       4 
11   tip      low     2    7.4  10.89     13.3        9.5       5 
12   tip      low     2    3.1   8.74     16.1       39.1       3 
13 notip   medium     1    5.6  11.03     18.6       49.9       8 
14 notip   medium     1    5.3   9.29     11.5       82.3       6 
15 notip   medium     2    5.4  11.36     17.8      104.6      12 
16 notip   medium     2    3.9   9.07      9.6       90.4       7 
17 notip   medium     2    3.9  12.97     17.0       97.5       5 
18 notip     high     1    8.5  22.53     20.8      166.9      16 
19 notip     high     1    8.5  17.33     19.8      184.4      12 
20 notip     high     2    4.7  13.42     19.8      124.7       5 
21 notip     high     2    5.0  16.82     17.3      182.5      15 
22 notip      low     1    3.9   7.17     13.5       52.8       6 
23 notip      low     1    2.3   7.28     13.8       32.8       6 
24 notip      low     2    2.4   9.10     14.5       78.7       8 
25 notip      low     2    5.7   9.05      9.6       63.2       6 
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To list the names of your variables in the dataframe use the names() function 
 
> names(petunia) 
[1] “treat”       “nitrogen”   “block”      “height”     “weight”     
[6] “leafarea”   “shootarea” “flowers” 
 
Alternatively, you can obtain more information about your dataframe using the 
str() function 
 
> str(petunia) 
 
'data.frame': 96 obs. of  8 variables: 
 $ treat    : Factor w/ 2 levels "notip","tip": 2 2 2 2 2... 
 $ nitrogen : Factor w/ 3 levels "high","low","medium": 2 2  ... 
 $ block    : int  1 1 1 1 1 1 1 1 2 2 ... 
 $ height   : num  8 8 6.4 7.6 9.7 12.3 9.1 8.9 7.4 3.1 ... 
 $ weight   : num  6.88 10.23 5.97 13.05 6.49 ... 
 $ leafarea : num  9.3 11.9 8.7 7.2 8.1 13.7 9.7... 
 $ shootarea: num  16.1 88.1 7.3 47.2 18 28.7... 
 $ flowers  : int  4 4 2 8 3 5 3 7 5 3 ... 
 
3.4 Selecting variables in the dataframe 
 
To access single variables in a dataframe, use the dollar symbol ($) between the 
data frame and column names 
 
> petunia$height # extracts all values from the variable height in the petunia 

# dataframe 
 
 [1]  7.5 10.7 11.2  6.0 10.4  9.8  6.9  9.4 10.4 12.3 10.4 11.0  7.1  
[14] 6.0  9.0 4.5 12.6 10.0 10.0  8.5 14.1 10.1  8.5  6.5 11.5  7.7  6.4  
[28] 8.8  9.2  6.2 6.3 17.2  8.0  8.0  6.4  7.6  9.7 12.3  9.1  8.9  7.4  
[42] 3.1  7.9  8.8  8.5 
 
It is often useful to be able to extract parts of a dataframe (known as indexing or 
subscripting). You can extract specific elements, whole columns or rows, or parts 
of the dataframe based on some logical test.  
 
For example 
 
> petunia[2,4] 
[1] 10.7 
 
extracts the element from the second row, fourth column (which corresponds to 
the height of a plant grown with a tip, in medium nitrogen in block 1 – check it in 
the dataframe on page 27). This is also the same as petunia$height[2] 
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If you want to extract values from more than one column and/or row then 
 
> petunia[1:10,1:4] 
 
   treat nitrogen block height 
1  tip   medium     1    7.5 
2  tip   medium     1   10.7 
3  tip   medium     1   11.2 
4  tip   medium     1    6.0 
5  tip   medium     1   10.4 
6  tip   medium     1    9.8 
7  tip   medium     1    6.9 
8  tip   medium     1    9.4 
9  tip   medium     2   10.4 
10 tip   medium     2   12.3 
 
extracts rows 1 to 10, columns 1 to 4. 
 
If you do not specify a row or column, then R will extract all elements in all rows or 
columns. For example, to select all the columns of the first 10 rows  
 
> petunia[1:10,] 
 
   treat nitrogen block height weight leafarea shootarea flowers 
1  tip   medium     1    7.5   7.62     11.7       31.9       1 
2  tip   medium     1   10.7  12.14     14.1       46.0      10 
3  tip   medium     1   11.2  12.76      7.1       66.7      10 
4  tip   medium     1    6.0   8.78     11.9       20.3       1 
5  tip   medium     1   10.4  13.58     14.5       26.9       4 
6  tip   medium     1    9.8  10.08     12.2       72.7       9 
7  tip   medium     1    6.9  10.11     13.2       43.1       7 
8  tip   medium     1    9.4  10.28     14.0       28.5       6 
9  tip   medium     2   10.4  10.48     10.5       57.8       5 
10 tip   medium     2   12.3  13.48     16.1       36.9       8   
 
Notice in the example above that there is no value after the comma so all columns 
have been included by default. If you want to include all rows of the first 4 columns 
then use petunia[,1:4] 
 
In addition to using the 'position' method of extracting variables (columns) you can 
also name the variables directly when you using the square bracket [ ] notation. 
For example,  
 
  
> petunia[1:10, c("treat", "nitrogen", "leafarea")] 
 
Extracts rows 1 to 10 and the columns 'treat', 'nitrogen' and 'leafarea'. 
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You can also select parts of the dataframe based on a logical test. In order to select 
rows with the treatment ‘tip’, nitrogen level ‘medium’ and a height greater than 6 
cm use 
 
> petunia[petunia$height > 6 & petunia$treat == "tip" & 

    petunia$nitrogen == "medium",] 
 
   treat nitrogen block height weight leafarea shootarea flowers 
1  tip   medium     1    7.5   7.62     11.7       31.9       1 
2  tip   medium     1   10.7  12.14     14.1       46.0      10 
3  tip   medium     1   11.2  12.76      7.1       66.7      10 
5  tip   medium     1   10.4  13.58     14.5       26.9       4 
6  tip   medium     1    9.8  10.08     12.2       72.7       9 
7  tip   medium     1    6.9  10.11     13.2       43.1       7 
8  tip   medium     1    9.4  10.28     14.0       28.5       6 
9  tip   medium     2   10.4  10.48     10.5       57.8       5 
10 tip   medium     2   12.3  13.48     16.1       36.9       8 
11 tip   medium     2   10.4  13.18     11.1       56.8      12 
12 tip   medium     2   11.0  11.56     12.6       31.3       6 
13 tip   medium     2    7.1   8.16     29.6        9.7       2 
15 tip   medium     2    9.0  10.20     10.8       90.1       6 
 
Notice the use of ‘==’ to specify ‘equals to’ and again no value after the comma. 
Also, notice that we can combine logical tests using the & symbol.  
 
Remember when we used the function order() to order one vector based on the 
order of another vector (page 22 to jog your memory). This comes in very handy if 
you want to sort columns in your dataframe but keep each value associated with 
the correct row. For example, if we want all of the rows in the dataframe ordered 
by height we can use 
 
> petunia[order(petunia$height),] 
 
    treat nitrogen block height weight leafarea shootarea flowers 
68 notip     high     1    1.2  18.24     16.6      148.1       7 
62 notip   medium     2    1.8  10.47     11.8      120.8       9 
86 notip      low     1    1.8   6.01     17.6       46.2       4 
72 notip     high     1    2.1  19.15     15.6      176.7       6 
63 notip   medium     2    2.2  10.70     15.3       97.1       7 
84 notip      low     1    2.2   9.97      9.6       63.1       2 
82 notip      low     1    2.3   7.28     13.8       32.8       6 
89 notip      low     2    2.4   9.10     14.5       78.7       8 
17   tip     high     1   12.6  18.66     18.6       54.0       9 
21   tip     high     1   14.1  19.12     13.1      113.2      13 
32   tip     high     2   17.2  19.20     10.9       89.9      14 
 
The above command translates to: order all rows of the dataframe petunia in 
ascending order of height. 
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An alternative method of selecting parts of the dataframe is to use the subset() 
function. The advantage of subset is you no longer need to use the $ notation 
when specifying variables  
 
> tipplants <- subset(petunia, treat=="tip" & 
nitrogen=="medium" & block=="2") 
 
> tipplants 
 
   treat nitrogen block height weight leafarea shootarea flowers 
9    tip   medium     2   10.4  10.48     10.5      57.8       5 
10   tip   medium     2   12.3  13.48     16.1      36.9       8 
11   tip   medium     2   10.4  13.18     11.1      56.8      12 
12   tip   medium     2   11.0  11.56     12.6      31.3       6 
13   tip   medium     2    7.1   8.16     29.6       9.7       2 
14   tip   medium     2    6.0  11.22     13.0      16.4       3 
15   tip   medium     2    9.0  10.20     10.8      90.1       6 
16   tip   medium     2    4.5  12.55     13.4      14.4       6 
 
In this example a new variable, tipplants, has been created and contains values 
of plants with tips intact, grown at medium levels of nitrogen in block 2. 
 
And if you only want certain columns you can use the select  argument 
 
> tipplants <- subset(petunia, treat=="tip" & nitrogen == 
"medium" & block=="2", select = c("treat", "nitrogen", 
"leafarea")) 
 
Which will return the treat, nitrogen and leafarea columns only. 
 
In order to get a summary of your dataframe you can type 
 
> summary(petunia) 
 
   treat      nitrogen      block         height          weight       
 notip:48    high  :32   Min.   :1.0   Min.   :1.200    Min.   : 5.790   
 tip  :48    low   :32   1st Qu.:1.0   1st Qu.:4.475    1st Qu.: 9.027   
             medium:32   Median :1.5   Median : 6.400   Median :11.395   
                         Mean   :1.5   Mean   : 6.794   Mean   :12.155   
                         3rd Qu.:2.0   3rd Qu.: 8.925   3rd Qu.:14.537   
                         Max.   :2.0   Max.   :17.200   Max.   :23.890   
     
   leafarea       shootarea         flowers       
 Min.   : 5.80   Min.   :  5.80   Min.   : 1.000   
 1st Qu.:11.07   1st Qu.: 39.05   1st Qu.: 4.000   
 Median :13.45   Median : 70.05   Median : 6.000   
 Mean   :14.05   Mean   : 79.78   Mean   : 7.063   
 3rd Qu.:16.45   3rd Qu.:113.28   3rd Qu.: 9.000   
 Max.   :49.20   Max.   :189.60   Max.   :17.000   



 35 

 
Continuous variables (i.e. height, weight etc) are summarised as the mean, 
minimum, maximum, median, first quartile and third quartile. The number of values 
in each level of categorical variable is also given. Notice that R has assumed that 
the variable block is a continuous variable as the level labels are numeric (1 and 
2). To declare block as a factor and assign it to a new variable Fblock in the 
petunia dataframe use the factor() function 
 
> petunia$Fblock <- factor(petunia$block) 
 
To check whether this has worked 
 
> is.factor(petunia$Fblock) # ask R whether Fblock is a factor 
[1] TRUE     # R answers yes 
 
and the summary now reads as a categorical variable 
 
> summary(petunia$Fblock) 
 1  2  
48 48 
 
If you want to create a table of summary data of a variable as a function of different 
categories you can use the tapply() function 
 
> tapply(petunia$height, petunia$treat, mean) 
notip    tip  
4.7375   8.8500  
 
The above command provides the mean of the height of plants in the ‘tip’ and 
‘notip’ treatments.  
 
Note: if your dataframe contains missing values coded as NA’s, R will return an 
NA for which ever summary you have requested.  
 
> tapply(petunia$height, petunia$treat, mean) 
 notip    tip    # one of the height values in the tip treatment 
4.7375     NA   # contained a missing value 
 
To avoid this, include the argument na.rm=T in your command 
 
> tapply(petunia$height, petunia$treat, mean, na.rm=T) 
   notip      tip  
4.737500 8.865217 
 
You can also get a full summary of a specified group 
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> tapply(petunia$height, petunia$treat, summary) 
 
$notip 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
  1.200   3.150   4.500   4.737   5.725  10.900  
$tip 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
   3.10    7.05    8.80    8.85   10.40   17.20 
 
or can summarise the variable by more than one category using list() 
 
> tapply(petunia$height,list(petunia$treat, petunia$nitrogen),  

mean) 
         high   low   medium 
notip 5.70625 3.66875 4.8375 
tip   9.60000 8.03750 8.9125 
 
Other useful functions for extracting summaries of data are lapply() and 
sapply(). The former returns a list whereas the latter tries to simplify the result 
to a vector.  
 
3.5 Datasets included with R 
 
The are numerous datasets already included with the base installation of R. To 
obtain a list of datasets type 
 
> data() 
 
A window will open and the available datasets are listed. 
 
Data sets in package ‘datasets’: 
 
AirPassengers           Monthly Airline Passenger Numbers 1949 
Bjsales                 Sales Data with Leading Indicator 
Bjsales.lead (Bjsales)  Sales Data with Leading Indicator                    
BOD                     Biochemical Oxygen Demand 
CO2                     Carbon Dioxide uptake in grass plants 
ChickWeight             Weight versus age of chicks on different  
Dnase                   Elisa assay of Dnase 
EuStockMarkets          Daily Closing Prices of Major European  
                        Indices, 1991-1998 
Formaldehyde            Determination of Formaldehyde 
 
To make the dataset, CO2, available for use simply type 
 
> data(CO2) 
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3.6 Matrices 
 
Another useful data structure used in many disciplines such as population ecology, 
theoretical and practical statistics is the matrix. A matrix is simply a vector that has 
additional attributes called dimensions. R has numerous built in functions to 
perform matrix operations.  
 
A convenient way to create a matrix is to use the matrix() function 
 
> matrix(1:16, nrow=4, byrow=TRUE) 
     [,1] [,2] [,3] [,4] 
[1,]    1    2    3    4 
[2,]    5    6    7    8 
[3,]    9   10   11   12 
[4,]   13   14   15   16 
 
The above command creates a matrix from a sequence 1 to 16 in four rows 
(nrow=4) and fills the matrix rowwise (byrow=TRUE) rather than columnwise. 
 
You can also define row and column names  
 
> x <- matrix(1:16, nrow=4, byrow=TRUE) 
> rownames(x) <- c("A", "B", "C", "D") 
> colnames(x) <- c("a", "b", "c", "d") 
> x 
   a  b  c  d 
A  1  2  3  4 
B  5  6  7  8 
C  9 10 11 12 
D 13 14 15 16 
 
To transpose a matrix use the transposition function t() 
 
> y <- t(x) 
> y 
  A B  C  D 
a 1 5  9 13 
b 2 6 10 14 
c 3 7 11 15 
d 4 8 12 16 
 
To extract a vector of the diagonal elements of the matrix use the diag() function 
 
> diag(y) 
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[1]  1  6 11 16 
 
All the usual operations using matrices may be performed such as matrix addition, 
multiplication etc 
 
> mat.1 <- matrix(c(2,0,1,1), nrow=2) # notice that the matrix 
> mat.1      # has been filled column wise 
     [,1] [,2] 
[1,]    2    1 
[2,]    0    1 
 
> mat.2 <- matrix(c(1,1,0,2), nrow=2) 
> mat.2 
     [,1] [,2] 
[1,]    1    0 
[2,]    1    2 
 
 
 
> mat.1 + mat.2   # matrix addition 
     [,1] [,2] 
[1,]    3    1 
[2,]    1    3  
 
> mat.1 %*% mat.2   # matrix multiplication 
     [,1] [,2] 
[1,]    3    2 
[2,]    1    2 
 
> mat.1 * mat.2   # element by element products 
     [,1] [,2] 
[1,]    2    0 
[2,]    0    2    
      
Functions can be applied to the rows or columns of a matrix using the apply() 
function. For example, lets create a matrix by taking 20 random samples (without 
replacement) from a sequence of numbers from 1 to 20 using the sample() 
function  
 
> m <- matrix(sample(1:20,20), nrow=4, byrow=TRUE) 
> m 
     [,1] [,2] [,3] [,4] [,5] 
[1,]   17    1    6    3   14 
[2,]   16    9    2   15    4 
[3,]   13    5    7   10   18 
[4,]   11    8   20   12   19 
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To calculate the mean value of each row 
 
> apply(m, 1, mean) 
[1]  8.2  9.2 10.6 14.0 
The second argument of the apply() function defines which margin of the matrix 
the function will be applied to. 1 indicates that the function will be applied to the 
rows and 2 to the columns. The third argument designates which function to apply.  
 
> apply(m, 2, sum)  # calculates column totals 
[1] 57 23 35 40 55 
 
We can add these row means and column totals to the matrix using rbind() for 
adding rows and cbind() for adding columns  
 
> m <- rbind(m, apply(m,2,sum)) 
> m <- cbind(m, apply(m,1,mean)) 
 
> m 
     [,1] [,2] [,3] [,4] [,5] [,6] 
[1,]   17    1    6    3   14  8.2 
[2,]   16    9    2   15    4  9.2 
[3,]   13    5    7   10   18 10.6 
[4,]   11    8   20   12   19 14.0 
[5,]   57   23   35   40   55 42.0 
 
3.7 Lists 
 
The final data structure we will consider is a list. A list is a data structure that can 
contain any class of variable and are invaluable for storing complicated output from 
functions among other things. In fact, many of R’s statistical functions (see Section 
5) generate lists which contain useful information which can be accessed directly 
(residuals and fitted values for example).  
 
To generate a list, use the list() function 
 
> lis.1 <- list("abc", c(1,2,3,4,5), TRUE) 
> lis.1 
[[1]] 
[1] "abc" 
 
[[2]] 
[1] 1 2 3 4 5 
 
[[3]] 
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[1] TRUE 
 
You can access the elements of a list using double square brackets [[]] rather 
than the single squared brackets used for vectors, dataframes and matrices. 
 
> lis.1[[2]]  # extracts values in the second element 
[1] 1 2 3 4 5 
 
> lis.1[[2]][3] # extracts the third value of the second element  
[1] 3 
 
Elements of the list can also be named either during the construction of the list  
 
> lis.2 <- list(first=c("abc", "def", "ghi"), 
second=c(1,2,3,4,5), third=FALSE) 
> lis.2 
$first 
[1] "abc" "def" "ghi" 
 
$second 
[1] 1 2 3 4 5 
 
$third 
[1] FALSE 
 
or after the list has been created using the names() function 
 
> names(lis.1) <- c("first element", "second element", "third 
element")  
> lis.1 
$"first element" 
[1] "abc" 
 
$"second element" 
[1] 1 2 3 4 5 
 
$"third element" 
[1] TRUE 
 
Functions can be applied to all elements of a list using the lapply() function 
(which also returns a list) 
 
> lapply(lis.1, mean) # calculate the mean of each element 
$"first element" 
[1] NA 
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$"second element" 
[1] 3 
 
$"third element" 
[1] 1 
 
 
Warning message: 
argument is not numeric or logical: returning NA in: 
mean.default(X[[1]], ...) 
 
Notice how R returned an NA and a warning message for the first element as it 
was unable to calculate a mean for a character. Also notice that it did return a 
mean for the third element which is a logical variable. The reason for this is that R 
codes TRUE and FALSE as 1’s and 0’s in the background. 
 
3.8 Exporting data from R 
 
Data generated using R (random numbers, matrices etc) or dataframes which have 
been modified can be exported to an external file (to be used in Excel for example) 
using a variety of methods. In order to export a dataframe, perhaps the simplest 
method is to use the function write.table(). In Windows use  
 
> write.table(newpetunia, "c:\\Rdata\\newpetunia.txt", 
col.names = TRUE, row.names = FALSE, sep = "\t")  
 
On Mac OSX or Linux 
 
> write.table(newpetunia, "/Rdata/newpetunia.txt", 
col.names = TRUE, row.names = FALSE, sep = "\t")  
 
The above command exports the variable newpetunia as a text file (sep=”\t” 
specifies tab delimited) to a directory called Rdata located on the c:\ drive (for 
Windows). By default, write.table() will automatically add row names and 
column names unless you specify otherwise (as in the row.names=FALSE 
example above). You can also export dataframes as a comma separated file (csv) 
using write.csv(), or by specifying the delimiter as an argument in the 
write.table() function using sep=”,” 
 
> write.table(newpetunia, "c:\\Rdata\\newpetunia.csv", 
sep=",", col.names = TRUE, row.names = FALSE)  
 
If you're in a hurry you can also write directly to the MS Windows clipboard using  
  
> write.table(newpetunia, file="clipboard", sep="\t", 
col.names = TRUE, row.names = FALSE) 
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Once you have executed the above command the variable newpetunia is copied 
to the clipboard. You can then paste it into whatever software package you are 
using. This is useful if you don’t want to create an intermediate file and then import 
this file. 
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4.0  Graphics in R 
 
Summarising your data, either numerically or graphically, is an important (if often 
overlooked) component of any data analyses. Fortunately, R has excellent 
graphics capabilities and can be used whether you want to produce plots for initial 
data exploration, model validation or highly complex publication quality graphs. To 
see some examples of graphics produced in R type 
 
> demo(graphics) 
 
and hit return to scroll through the examples. 
 
When graphics are created in R they are (unless otherwise told) displayed in the 
active graphical device or window. If no such window is open when a graphical 
function is executed, R will open one. However, each time a new plot is produced 
in the graphics window it replaces the old one. You can save a history of your 
graphs by activating the ‘Recording’ option in the History | Recording menu. You 
can access the old graphs by using the ‘Page Up’ and ‘Page Down’ keys to scroll 
through the graphs. Alternatively, you can simply open a new active graphics 
window by using the function x11().  
 
You can print your graph directly from the graphics window or copy the graph to 
the clipboard (right click over the graph) and paste it into a word processor. You 
can copy the graph as either a metafile or a bitmap image, however we would 
suggest using the metafile option. A graphic can be saved in many formats 
including bitmap, metafile, postscript, PDF or jpeg (see section 4.4). For 
publication quality graphs we would recommend using PDF or postscript as these 
formats can be scaled with no loss of quality. 
 
4.1 Basic plots 
 
There are many functions in R used to produce graphs, ranging from the very basic 
to the highly complex. It is impossible to cover every aspect of producing graphics 
in R in this introductory guide. However, we will cover most of the more common 
methods of graphing data and briefly describe how to customise the standard 
format. 
 
The most common function used to produce graphs in R is the plot() function. 
For example, to plot the height of petunia plants (Figure 4.1). 
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> plot(petunia$height)   
 

 
Figure 4.1: dotplot of a single continuous variable 

 
R has plotted the values of height (on the y axis) against an index of the values 
since there is only one variable to plot. The index is just the order of the values as 
they appear in the dataframe. If you want to sort the values you can use 
plot(sort(petunia$height)) The variable labels have been automatically 
included as axes labels and the axes scale has been automatically set. 
 
Note: if you only specify the variable height rather than petunia$height the 
plot function will fail as R will be unable to find the variable height 
 
> plot(height) 
Error in plot(height) : object "height" not found 
 
As many of the plotting functions do not allow you to specify the dataframe directly 
(using data = for example), a useful function to use is with(). For example 
 
> with(petunia, plot(height))  # tells R to plot height using petunia 
 
To plot a continuous dependent variable Y against a continuous independent 
variable X use either   
 
> plot(X, Y)  
 
or 
 
> plot(Y ~ X)   # ~ = ‘tilda’ 
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Notice that with the first method, R plots the first variable (X) along the horizontal 
axis and the second variable (Y) along the vertical axis. The second command is 
an example of using the formula method (should be read as “Y described by X” 
more on this in section 5.3) which will plot the first variable (Y) on the vertical and 
the second variable (X) on the horizontal axis. Sometimes the formula method 
offers more flexibility. 
 
For example, to plot the shoot area of petunia plants against weight (Figure 4.2) 
 
> plot(petunia$weight, petunia$shootarea) 
 
or equivalently 
 
> plot(petunia$shootarea ~ petunia$weight) 

 
Figure 4.2: Scatterplot of two continuous variables 

 
The graphs so far have been pretty basic. However, the plot() function has 
numerous options which you can change from the default settings to allow almost 
complete control over the look of the graph. More details on how to do this is given 
in section 5.3.  
 
You can also specify the type of graph you wish to plot using the option type="". 
For example, you can plot just the points (type="p"), lines (type="l"), both 
points and lines connected (type="b") and both points and lines with the lines 
running through the points (type="o"). To plot both points and lines  
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> plot(petunia$height, type="b") 
 
An example of all four types of graph is shown in Figure 4.3. A special case is 
type="n" which plots the axes but not the data. This can be useful if you want to 
customise a graph as you will see in section 4.2.  

 
Figure 4.3: Examples of different plotting styles 

 
The hist() function allows you to draw a histogram of a variable in order to gain 
an impression of its frequency distribution. To plot a histogram of height (Figure 
4.5) 
 
> hist(petunia$height)   
 

 
Figure 4.5: A histogram with automatic breaks 
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R automatically creates the breaks (or bins) in the histogram unless you specify 
otherwise by using the break= argument (Figure 4.6) 
 
> brk <- seq(0,18,1)  # creates a vector to specify the breaks 
> hist(petunia$height, breaks=brk)  
 

 
Figure 4.6: A histogram with user defined breaks 

 
You can also display your data as a proportion rather than a frequency by 
specifying freq=FALSE (Figure 4.7) 
 
> hist(petunia$height, freq=FALSE, breaks=brk) 

 
Figure 4.7: A histogram with proportions displayed 
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An alternative to plotting a histogram is to plot a kernel density curve. You can 
superimpose a density curve onto the histogram using the density()and 
lines()  functions (Figure 4.8) 
 
> dens <- density(petunia$height)#  defines the density curve to dens 
> hist(petunia$height, breaks=brk, freq=F)# plots the histogram  
> lines(dens)     # plots the curve on the graph 

 
Figure 4.8: kernel density estimate  

 
Another method of plotting a graphical summary of distributions is to use a box 
and whiskers plot. To call this in R us the boxplot() function (Figure 4.9) 
 
> boxplot(petunia$height, xlab="height") 

 
Figure 4.9: A simple boxplot of one continuous variable 
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To summarise distributions grouped by a categorical variable, use the formula 
method to specify what to plot (Figure 4.10) 
 
> boxplot(petunia$height, xlab="treatment", ylab="height (mm)") 
 

 
Figure 4.10: A boxplot grouped by a categorical variable with two levels 

 
If you want to place tick marks on the axes which correspond to the position of the 
data points (Figure 4.11) use the rug() function.  
 
The argument side= tells R on which axis to plot the tick marks (1=bottom, 2=left, 
3=top, 4=right) 
 
> boxplot(height ~ treat, xlab="treatment", ylab="height (mm)", 
data = petunia) 
> rug(petunia$height[petunia$treat=="notip"],side=2)# tick marks of  

      #‘notip’ on left axis 
 
> rug(petunia$height[petunia$treat=="tip"],side=4)# tick marks of ‘tip’ on  

  #right axis 
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Figure 4.11: A boxplot with rug marks 

 
 
Identifying unusual observations in continuous variables is extremely important as 
they may influence the parameter estimates from your statistical model. A really 
useful (if undervalued) plot to help identify outliers is the Cleveland dotplot: 
 
> dotchart(petunia$height, xlab="height") 

 
Figure 4.12: An example of a dotplot 

 
In Figure 4.12, data from the height variable is plotted along the x axis and the data 
is plotted in the order it occurs in the petunia dataframe on the y axis.   
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An example of a dotplot highlighting a potential outlier is given in Figure 4.13 below.  
 

 
Figure 4.13: dotplot with potential outlier 

 
With datasets that contain many continuous variables, it is often important to 
determine whether any of the variables are inter-related. Plotting multivariate data 
can sometimes be a real challenge, but R makes it easy. To plot all continuous 
variables (you can also plot categorical variables) in the dataframe petunia 
simply use the pairs() function.  
 
> pairs(petunia[, 4:8]) 
 
The pairs() function plots a matrix of all variables on all possible axes. In the 
example above, columns 4 to 8 contain the continuous variables (height, weight, 
leafarea, shootarea and flowers) so in this case we just want to plot these (Figure 
4.14).  
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Figure 4.14: Pair plot of five continuous variables 

 
Interpretation of the matrix of plots takes a bit of getting used to. The rows of the 
matrix contain the names of the variables on the y axis and the columns contain 
the names of the variables on the x axis. For example, the previous plot of shoot 
area and weight on page 39 is represented here in the plot 2nd row from the top 
and 4th from left.  A plot of height on the y axis and weight on the x axis is given in 
the top row, 2nd from left. The corresponding plot of height on the x axis and weight 
on the y axis is plotted 2nd row from top, 1st from the left. 
 
Additional functions can be called within pairs() to aid interpretation of the 
matrix.  For example, panel.smooth adds a Lowess smoother to each plot 
(Figure 4.15) 
 
> pairs(petunia[, 4:8], panel=panel.smooth) 
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Figure 4.15: Pair plot with a LOWESS smoother 

 
A really useful little function is given in the help file for the pairs() function 
(remember ?pairs). The panel.cor function puts the absolute correlations of 
the variables in the upper panels with the size of the text corresponding to the 
strength of the correlation (Figure 4.16). The function is 
 
## put (absolute) correlations on the upper panels, 
## with size proportional to the correlations. 
panel.cor <- function(x, y, digits=2, prefix=””, cex.cor) 
{ 
    usr <- par(“usr”); on.exit(par(usr)) 
    par(usr = c(0, 1, 0, 1)) 
    r <- abs(cor(x, y)) 
    txt <- format(c(r, 0.123456789), digits=digits)[1] 
    txt <- paste(prefix, txt, sep=””) 
    if(missing(cex.cor)) cex <- 0.8/strwidth(txt) 
    text(0.5, 0.5, txt, cex = cex * r) 
} 
 

Don’t worry about understanding this function (it may be fun to try!) all you need to 
know is how to use it. Simply copy the text from the help file and paste it into the 
command line or RStudio. This has now defined the function panel.cor so you 
can now use it in the pairs() command 
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> pairs(petunia[,4:8],lower.panel = panel.smooth, 
upper.panel = panel.cor) 
 

 
Figure 4.16: Pair plot with LOWESS smoothers and absolute correlations 

  
The lower.panel = panel.smooth argument has plotted each variable and 
fitted a Lowess smoother in the lower half of the matrix. The upper.panel = 
panel.cor has put the values of the correlations in the upper half of the matrix 
with the size of the text corresponding to the strength of the correlation. So the 
relationship between shoot area and weight has an absolute correlation of r = 0.66. 
 
When plotting two variables, it is often useful to determine whether a third variable 
is obscuring or altering any relationship. A really handy plot to use in these 
situations is a conditioning plot which is called using the coplot() function. The 
coplot() function plots two variables but conditioned (|) by a third variable 
(Figure 4.17). This variable can be either continuous or categorical. To look at the 
relationship between the number of flowers and weight of petunia plants 
conditioned by leaf area 
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> coplot(flowers~ weight|leafarea, data = petunia)   
      # plots flowers against weight 
          # conditioned by leaf area 
 

 
Figure 4.17: A Coplot of two continuous variables conditioned by another continuous  

  variable 
 

Again, it takes a little practice to interpret coplots. The number of flowers is plotted 
on the y axis and the weight of plants on the x axis, with 6 separate plots 
conditioned on the value of leaf area. The panels are read from bottom left to top 
right along each row. The bottom left panel has the lowest values of leaf area 
whereas the top right panel has the highest. The panel at the top gives the range 
of values of leaf area for each of the panels. Notice that the range of values differs 
between panels and that the ranges overlap from panel to panel. 
 
An example of a coplot with two categorical conditioning variables is to plot flowers 
as a function of weight for each combination of treatment and nitrogen as shown 
in Figure 4.18. 
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> coplot(flowers~ weight| treat* nitrogen, data = petiunia) 
 

 
Figure 4.18: A coplot of two continuous variable conditioned by two categorical variables 

 
Yet another method of plotting multiple variables is to use the plotting functions 
from the lattice package. The lattice package offers a wide variety of plotting 
methods which are extremely powerful and versatile. To access these functions 
you first have to load the lattice package into R’s memory 
 
> library(lattice) 
 
To see a demonstration of the potential of lattice functions, type 
 
> demo(lattice) # hit return to start the demo and click on the graphic 

# window to scroll through the examples 
 
The most commonly used function in lattice is xyplot() which is used to plot 
panels of scatterplots. This function is somewhat similar to coplot()but offers 
much more versatility. A simple example of using xyplot() is to plot the number 
of flowers as a function of shoot area with a separate panel for nitrogen and 
treatment combinations (Figure 4.19) 
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> xyplot(flowers~shootarea|nitrogen*treat, data = petunia) 

 
Figure 4.19: An xyplot of two continuous variables summarised by two categorical 

variables 
 

You can also specify different symbols or colours for the data points in each plot 
which provide information about an additional grouping variable. For example, if 
we wanted to identify which data points were from block 1 or 2 in the petunia 
experiment (Figure 4.20) 
 
> xyplot(flowers~shootarea|nitrogen*treat, groups = block, 
auto.key = T, data = petunia) 

 
Figure 4.20: xyplot with a grouping variable 
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The auto.key=T  argument includes a key specifying the grouping variable1.  
Remember to use help to find out more information on xyplot() as this is only 
the very briefest introduction. 
  
4.2 Reformatting basic plots 
 
All the graphs presented so far are suitable for data exploration. If however, you 
would like to make them a little prettier (for your thesis or publications for example) 
you can change many of the default settings to get them just the way you want. 
Many of the changes you can make are common to most of the graphing functions 
(except those in the package lattice) so it’s worth mentioning a few now.  
 
The plot of shoot area and weight of petunia plants on page 45 is a reasonable 
starting point for a graph, but it could do with a title, better axes labels, better axes 
scale and larger data points (Figure 4.21). To change the graph use   
 
> with(petunia, plot(shootarea ~ weight, main="Relationship 
between shoot area and weight of petunia plants", xlab="weight 
(g)", ylab="shoot area (mm2)", xlim=c(0,25),ylim=c(0,200), 
pch=16,bty=”l”, cex=1.2)) # note the use of the with() function 
 
 

 
Figure 4.21: An example of a reformatted plot 

 

 
1 The code to produce this plot has been slightly simplified as the symbol and legend colours were changed 
from the default colour as this manual is printed in black and white. The actual code: 
> symb <- c(1,16) 
> xyplot(flowers~shootarea|nitrogen*treat, groups=block, col=”black”, 

 pch=symb, key=list(points=list(pch=symb, col=”black”), 
 text=list(c("block 1","block 2"))), data = petunia) 
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The command above may look a little intimidating at first, but all you need to do is 
break it down into its constituent parts. The arguments main="", xlab="" and 
ylab=""1 add a main title, an x axis label and a y axis label1 respectively. xlim= 
and ylim= sets the scale for the x and y axes. The option pch=16 changes the 
type of symbol which is plotted (see Figure 31), bty="l" controls the type of box 
drawn around the graph, which in this case is an L shape. cex=1.2 controls the 
size of the text and symbols in the plot with the value corresponding to the change 
in size from the default (i.e. cex=2 would double the size of the default).  
 
A summary of useful graphical parameters you can use to customise your graphs 
is given in Table 2. Note, however, this is not an exhaustive list. Use 
?help.default to see other options.  
 
 
Table 2: Useful graphical parameters 
 
Command Description 

adj  controls justification of the text  (0 left justified, 0.5 centred, 1 right justified) 
bg  specifies the background colour of the plot(i.e. : bg=”red”, bg=”blue”) 
bty  controls the type of box drawn around the plot, values include: “o”, “l”, “7”, “c”, “u” , “]” (the 

box looks like the corresponding character); if bty=”n” the box is not drawn 

cex  
controls the size of text and symbols in the plotting area with respect to the default. Similar 
commands include: cex.axis controls the numbers on the axes, cex.lab numbers on the axis 
labels, cex.main the title and cex.sub the sub-title  

col  controls the colour of symbols; as for cex there are: col.axis, col.lab, col.main, col.sub 

font  an integer which controls the style of text (1: normal, 2: bold, 3: italics, 4: bold italics); as for 
cex there are: font.axis, font.lab, font.main, font.sub 

las  an integer which controls the orientation of the axis labels (0: parallel to the axes, 1: 
horizontal, 2: perpendicular to the axes, 3: vertical) 

lty  controls the line style, can be an integer (1: solid, 2: dashed, 3: dotted, 4: dotdash, 5: 
longdash, 6: twodash) 

lwd  a numeric which controls the width of lines 

pch  
controls the type of symbol, either an integer between 1 and 25, or any single character 
within quotes “” 

ps  an integer which controls the size in points of texts and symbols 
pty  a character which specifies the type of the plotting region, “s”: square, “m”: maximal 

tck  
a value which specifies the length of tick-marks on the axes as a fraction of the width or 
height of the plot; if tck=1 a grid is drawn 

tcl  
a value which specifies the length of tick-marks on the axes as a fraction of the height of a 
line of text (by default tcl=-0.5) 

 

 
1 For simplicity the superscript for “mm2” has not been included here. To include use 
    ylab=expression(paste("shoot", " area"," (",mm^2,")")) 
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Figure 4.22: A summary of plotting symbols (pch=1:25)  

 
In many cases it is often useful to build the graph in steps so you can add additional 
lines, data points and other useful information. It is important to realise that R will 
overlay subsequent commands on the same graph until you call a new graph using 
plot() etc. For example, if you wanted to plot weight against shoot area in the 
petunia dataframe, but use a different symbol and colour for each level of 
nitrogen (Figure 4.23) you could do it something like this 
 
> plot(petunia$shootarea~ petunia$weight, type="n", 
xlab="weight (g) ", ylab="shoot area (mm2)") 
 
The type=”n” option tells R to draw the axes but not to plot the data points. We 
can now add the data points using the points() function. We add each level of 
nitrogen at a time. So for data points in the group ‘low’ nitrogen we plot red circles 
 
> points(petunia$shootarea[petunia$nitrogen=="low"]~ 
petunia$weight[petunia$nitrogen=="low"], pch=1, col="red") 
 
data points in the ‘medium’ nitrogen group we plot blue triangles 
 
> points(petunia$shootarea [petunia$nitrogen=="medium"] ~ 
petunia$weight [petunia$nitrogen == "medium"], 
pch=2,col="blue") 
 
data points in the ‘high’ nitrogen group we plot black plus signs 
 
> points(petunia$shootarea[petunia$nitrogen=="high"]~ 
petunia$weight[petunia$nitrogen=="high"],pch=3, 
col="black") 

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30
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Figure 4.23: A scatterplot with different colours and symbols  

 
An alternative method, although one that offers less control over the plotting 
symbols and colours, would be 
 
> plot(petunia$shootarea~ petunia$weight, xlab="weight 
(g)", ylab="shoot area (mm2)", pch=as.numeric( 
petunia$nitrogen), col=as.numeric (petunia$nitrogen)) 
 
Using the as.numeric(nitrogen) argument for pch and col converts the 
factor nitrogen to numeric codes which are used to represent the plotting 
symbols and colours.  
  
As we have used different colours and symbols to represent our data, it would be 
useful to include a key (Figure 4.24). To do this we have to first find the appropriate 
co-ordinates to position the legend using the locator(1) function. This function 
allows you to get the co-ordinates of one point (you can replace 1 by any number 
of points) by placing the mouse over the graphics window and positioning the 
crosshairs and left-clicking (top left in this case). The co-ordinates are printed in 
the R console window. This will be the position of the top left corner of the legend 
box. 
 
> locator(1) 
$x 
[1] 5.608772 
 
$y 
[1] 192.1358 
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Once we have the position we can now use the legend() function to create the 
key. To keep things simple we first have to define a couple of vectors to describe 
our label text, points style and colour. 
 
> labs <- c("low","medium", "high") # label text 
> cols <- c("red", "blue", "black") # colour of data points  
> points <-c(1,2,3)      # style of data points 
 
And now to insert the key 
 
> legend(5.6,192.1, labs, pch=points, col=cols) 

 
Figure 4.24: A scatterplot with a key 

 
In the above command, the co-ordinates come first, then the vector labs which 
specifies the label text, followed by the vector points which defines the style of 
points and finally the vector cols to specify the colour of the points.     
 
If you want to fit a regression line for these data you can use the abline() 
function (Figure 4.25). To do this we first have to perform a regression analysis 
using the lm() function and then plot the regression line using abline(). Don’t 
worry about the details of lm() at the moment, we will discuss this in more detail 
in section 5.3.   
 
> petunia.lm <- lm(shootarea ~ weight, data=petunia) 
> abline(petunia.lm,lty=1) 
 
The first command tells R to perform a linear regression of shootarea and 
weight using the data petunia and store the result as petunia.lm. The 
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second command plots the regression line of petunia.lm using a single 
continuous line (lty=1). The graph is shown below 

 
Figure 4.25: A scatterplot with a regression line 

 
You can easily add text to a graph either on the plotting area by using text() or 
in the margins using mtext(). Suppose the graph above is one of a series plotted 
on the same page (more on this in section 4.3). It may be useful to place a letter 
on the graph so it can be identified in the figure title (Figure 4.26). As with adding 
a key, we first have to find the co-ordinates of the position of the centre of the text 
that we want to add using the locator(1) function.   
 
> locator(1) 
$x 
[1] 22.50871 
 
$y 
[1] 187.414 
 
> text(22.5,187.4, " (A) ", font=2) 
 
The co-ordinates are listed first, then the text to be added contained within quotes 
and finally the font=2 specifies boldface (1 corresponds to plain text, 3 to italics 
and 4 to boldface italics). Use ?text and ?mtext for more information. 
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Figure 4.26: Adding text to a graph 

 
4.3 Plotting multiple graphs 
 
There are a number of methods for plotting multiple graphs in the same graphics 
window, some of which you have already met, i.e. (pairs(), coplot(), 
xyplot()). One of the most common methods is to use the main graphical 
parameter par() and change the number of graphs per screen using the mfrow= 
argument. With this method, you have to specify the number of rows of plots you 
would like and then the number of plots per row. For example, to plot two graphs 
side by side then 
 
> par(mfrow=c(1,2)) 
> plot(petunia$shootarea, petunia$weight)# plots the first graph  

 
Figure 4.27: The first of a series of graphs plotted 
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To plot the next graph in the window you must issue another plotting directive 
(Figure 4.28) 
 
> plot(petunia$nitrogen, petunia$shootarea,xlab = 
"nitrogen",ylab="shootarea") 

 
 

Figure 4.28: Two graphs plotted in the same graphics window 
 

As you can see from the above example, you can mix different types of graph 
which is very useful when exploring your data. When you have finished, don’t 
forget to return to the old layout 
 
> par(mfrow=c(1,1)) 
 
Whilst we are on the subject of graphical parameters, it is worth noting that you 
can use many of the plotting parameters discussed in section 4.2 with the par() 
function. For example, you can change the background of all plots by 
 
> par(bg="lavender") 
 
This will give all plots a lavender background colour until specified otherwise. Use 
?par to find out more information on this very powerful function. 
 
4.4  Exporting plots to a file 
 
Creating plots in R is all well and good but what if you want to use these plots in 
your publication, report or thesis? One option is to copy the plot to your clipboard 
and paste it into your document. Perhaps a better and more flexible solution is to 
export your plot to an external file and then import this file into the document you're 
preparing. You can export plots from R to multiple different file formats such as 
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pdf, png, jpg etc. To create a pdf file of your plot use the pdf()  function. First 
open a pdf device using pdf(), write your plot code and then close the pdf device 
with the dev.off()  function:   
 
> pdf('file_name.pdf') 
> boxplot(height ~ treat, data = petunia) 
> dev.off() 
 
If you want to create a png file of your plot then you need to use the png()  
function instead of the pdf() function (don't forget to change the file extension to 
.png though).  
 
> png('file_name.png') 
> boxplot(height ~ treat, data = petunia) 
> dev.off() 
 
Other useful functions are; jpeg(), tiff()  and bmp(). Additional arguments 
to these functions allow you to change the size, resolution and background 
colour of your files. See ?png for more details.  
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5.0  Basic statistics 
 
In addition to R’s powerful graphic facilities, R includes a host of procedures which 
you can use to analyse your data. Many of these procedures are included with the 
base installation of R, however, even more can be installed with packages 
available from the CRAN website. All of the procedures described below can be 
carried out without installing additional packages.  
 
5.1 One and two sample tests 
 
The two main functions for these types of tests are the t.test()and 
Wilcox.test() that perform t tests and Wilcoxon’s signed rank test 
respectively. Both of these tests can be applied to one- and two- sample analyses 
as well as paired data. 
 
As an example of a one sample t test we will use the trees dataset which is 
included with R. To access the dataset 
 
> data(trees) 
> names(trees)  
[1] "Girth" "Height" "Volume" 
> summary(trees) 
     Girth           Height       Volume      
 Min.   : 8.30   Min.   :63   Min.   :10.20   
 1st Qu.:11.05   1st Qu.:72   1st Qu.:19.40   
 Median :12.90   Median :76   Median :24.20   
 Mean   :13.25   Mean   :76   Mean   :30.17   
 3rd Qu.:15.25   3rd Qu.:80   3rd Qu.:37.30   
 Max.   :20.60   Max.   :87   Max.   :77.00   
 
If we wanted to test whether mean height of black cherry trees in this sample is 70 
ft or not assuming these data are normally distributed  
 
> t.test(trees$Height, mu=70) 
 
        One Sample t-test 
 
data:  Height  
t = 5.2429, df = 30, p-value = 1.173e-05 
alternative hypothesis: true mean is not equal to 70  
95 percent confidence interval: 
 73.6628 78.3372  
sample estimates: 
mean of x : 76 
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The above summary has a fairly logical layout and includes the name of the test 
that we have asked for (One Sample t-test), which data has been used (data:  
Height), the t statistic, degrees of freedom and associated p value (t = 5.2429, 
df = 30, p-value = 1.173e-05). It also states the alternative hypothesis 
(alternative hypothesis: true mean is not equal to 70) which 
tells us this is a two sided test (not equal to), the 95% confidence interval for the 
mean (95 percent confidence interval:73.6628 78.3372) and also 
an estimate of the mean (sample estimates:mean of x 76). In the above 
example, the p value is very small and therefore we would reject the null hypothesis 
and therefore the mean height of our sample of black cherry trees is not equal to 
70.  
 
The function t.test() also has a number of additional arguments which can be 
used for one-sample tests. You can specify that a one sided test is required by 
using either alternative=”greater” or alternative=”less” which tests 
the null alternative that the sample mean is greater or less than the mean specified.  
For example, to test whether our sample mean is greater than 70 ft. 
 
> t.test(trees$Height, mu=70, alternative="greater") 
 
        One Sample t-test 
 
data:  Height  
t = 5.2429, df = 30, p-value = 5.866e-06 
alternative hypothesis: true mean is greater than 70  
95 percent confidence interval: 
 74.05764      Inf  
sample estimates: 
mean of x  
       76 
 
You can also change the confidence level used for estimating the confidence 
intervals using the argument conf.level=0.99. In this case the new confidence 
interval would be 99%. 
 
Although t tests are fairly robust against small departures from normality you may 
wish to use a ‘distribution free method’ such as the Wilcoxon’s signed rank test. In 
R, this is done in almost exactly the same way as the t test but using the 
Wilcox.test() function 
 
> wilcox.test(trees$Height, mu=70) 
 

Wilcoxon signed rank test with continuity correction 
 
data:  Height  
V = 419.5, p-value = 0.0001229 
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alternative hypothesis: true location is not equal to 70  
 
Warning messages: 
1: cannot compute exact p-value with ties in: 
wilcox.test.default(Height, mu = 70)    
 
Don’t worry too much about the warning message, R is just letting you know that 
your sample contained a number of values which were the same and therefore it 
was not possible to calculate an exact p value. This is only really a problem with 
small sample sizes. You can also use the arguments alternative =”greater” 
and alternative=”less”.  
 
It is always a good idea to examine your data for departures from normality, rather 
than just assuming everything is ok. In addition to the functions you have already 
come across (hist(), boxplot(), summary() etc), perhaps the simplest test 
of normality is the ‘quantile-quantile plot’. This graph plots the ranked sample 
quantiles from your distribution against a similar number of ranked quantiles taken 
from a normal distribution. If your sample is normally distributed then the plot of 
your data points will be in a straight line. Departures from normality will show up 
as a curve or s-shape in your data points. Judging just how much departure is 
acceptable comes with a little bit of practice. 
 
To construct a Q-Q plot (Figure 5.1) you need to use both the qqnorm() and 
qqline() functions 
 
> qqnorm(trees$Height) 
> qqline(trees$Height, lty=2) 

 
Figure 5.1: Q-Q plot of the height data 
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If you insist on performing a specific test for normality you can use the function 
shapiro.test() which performs a Shapiro – Wilk test of normality 
 
> shapiro.test(trees$Height) 
 
        Shapiro-Wilk normality test 
 
data:  Height  
W = 0.9655, p-value = 0.4034 
 
In the example above, the p value = 0.4034 which suggests that there is no 
evidence to reject the null hypothesis and we can therefore assume these data are 
normally distributed.  
 
In addition to one-sample tests, both the t.test() and Wilcox.test() 
functions can be used to test for differences between two samples. A two sample 
t test is used to test the hypothesis that the two samples come from distributions 
with the same mean. For example, a study was conducted to test whether ‘seeding’ 
clouds with dimethylsulphate altered the moisture content of the clouds. Ten 
random clouds were ‘seeded’ with a further ten ‘unseeded’. The dataset can be 
found in the ‘atmosphere.txt’ file 
 
> atmos <- read.table("D:\\Aberdeen R-Course\\atmosphere 
.txt", header = TRUE) 
> names(atmos) 
[1] "moisture" "treatment"     
> atmos 
   moisture   treatment 
1     300.6   seeded 
2     302.4   seeded 
3     298.6   seeded 
4     315.9   seeded 
5     306.9   seeded 
…… 
16    299.5 unseeded 
17    304.6 unseeded 
18    298.2 unseeded 
19    296.3 unseeded 
20    301.4 unseeded 
 
As with our previous dataframe (petunia), these data are stacked. The column 
‘moisture’ contains the moisture content measured in each cloud and the column 
‘treatment’ identifies whether the cloud was ‘seeded’ or ‘unseeded’. To perform a 
two-sample t test simply enter 
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> t.test(atmos$moisture ~ atmos$treatment) 
 
        Welch Two Sample t-test 
 
data:  moisture by treatment  
t = 2.5404, df = 16.807, p-value = 0.02125 
alternative hypothesis: true difference in means is not 
equal to 0  
95 percent confidence interval: 
  1.446433 15.693567  
sample estimates: 
  mean in group seeded mean in group unseeded  
                303.63                 295.06 
 
Notice the use of the formula method (atmos$moisture~ atmos$treatment, 
which reads as moisture described by treatment) to specify the test. You can also 
use other methods depending on the format of the dataframe. Use ?t.test for 
further details. The details of the output are similar to the one-sample t test. The 
Welch’s variant of the t test is used by default and does not assume that the 
variances of the two samples are equal. If you are sure the variances in the two 
samples are the same, you can specify this using the var.equal=T argument 
 
> t.test(atmos$moisture ~ atmos$treatment, var.equal=T) 
 
        Two Sample t-test 
 
data:  moisture by treatment  
t = 2.5404, df = 18, p-value = 0.02051 
alternative hypothesis: true difference in means is not 
equal to 0  
95 percent confidence interval: 
  1.482679 15.657321  
sample estimates: 
  mean in group seeded mean in group unseeded  
                303.63                 295.06 
 
To test whether the assumption of equal variances is valid you can perform an F-
test on the ratio of the group variances using the var.test() function. 
 
> var.test(atmos$moisture ~ atmos$treatment) 
 
        F test to compare two variances 
 
data:  moisture by treatment 
F = 0.5792, num df = 9, denom df = 9, p-value = 0.4283 
alternative hypothesis: true ratio of variances is not 
equal to 1  
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95 percent confidence interval: 
 0.1438623 2.3318107  
sample estimates: 
ratio of variances  
         0.5791888 
 
As the p value is greater than 0.05, there is no evidence to suggest that the 
variances are unequal at the 95% level. Note however, that the F-test is sensitive 
to departures from normality and should not be used with data which is not normal. 
See the car package for alternatives.  
 
The non-parametric two-sample Wilcoxon test (also known as a Mann-Whitney U 
test) can be performed using the same formula method   
 
> wilcox.test(atmos$moisture ~ atmos$treatment) 
 
        Wilcoxon rank sum test 
 
data:  moisture by treatment 
W = 79, p-value = 0.02881 
alternative hypothesis: true location shift is not equal to 
0  
 
You can also use the t.test() and wilcox.test() functions to test paired 
data. Paired data are where there are two measurements on the same 
experimental unit (either individual, site etc) and essentially tests for differences 
between the paired observations.  For example, the pollution dataset gives the 
biodiversity score of aquatic invertebrates collected using kick samples in 17 
different rivers. These data are paired because two samples were taken on each 
river, one upstream of a paper mill and one downstream. 
 
> pollution <- read.table("D:\\Aberdeen R-Course\\pollution 
.txt", header = TRUE) 
> names(pollution) 
[1] "down" "up"        
 
Note, in this case, the data are not stacked with upstream and downstream values 
in separate columns (you can use the formula method on stacked data if you wish). 
To conduct a paired t test use the paired=TRUE argument 
 
> t.test(pollution$down, pollution$up, paired=TTRUE) 
 
        Paired t-test 
 
data:  down and up  
t = -3.0502, df = 15, p-value = 0.0081 
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alternative hypothesis: true difference in means is not 
equal to 0  
95 percent confidence interval: 
 -1.4864388 -0.2635612  
sample estimates: 
mean of the differences  
                 -0.875 
 
The output is almost identical to that of a one-sample t test. It is also possible to 
perform a non-parametric matched-pairs Wilcoxon test in the same way 
 
> wilcox.test(pollution$down, pollution$up, paired=TRUE) 
 
        Wilcoxon signed rank test with continuity 
correction 
 
data:  down and up  
V = 8, p-value = 0.01406 
alternative hypothesis: true location shift is not equal to 
0  
 
Warning messages: 
1: cannot compute exact p-value with ties in: wilcox.test. 
default(down, up, paired = T) 
 
The function prop.test() can be used to compare two or more proportions. For 
example, a company wishes to test the effectiveness of an advertising campaign 
for a particular brand of cat food. The company commissions two polls, one before 
the advertising campaign and one after, with each poll asking cat owners whether 
they would buy this brand of cat food. The results are given in the table below 
 
 

 before after 
would buy 45 71 

would not buy 35 32 
 
 
From the table above we can conclude that 56% of cat owners would buy the cat 
food before the campaign compared to 69% after. But, has the advertising 
campaign been a success? 
 
The prop.test() function has two main arguments which are given as two 
vectors. The first vector contains the number of positive outcomes and the second 
vector the total numbers for each group. So to perform the test we first need to 
define these vectors  
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> buy <- c(45,71) #  creates a vector of positive outcomes 
> total <-c((45+35),(71+32)) # creates a vector of total numbers 
> prop.test(buy,total)  # perform the test 
 
        2-sample test for equality of proportions with 
continuity correction 
 
data:  buy out of total  
X-squared = 2.598, df = 1, p-value = 0.107 
alternative hypothesis: two.sided  
95 percent confidence interval: 
 -0.27865200  0.02501122  
sample estimates: 
   prop 1    prop 2  
0.5625000 0.6893204   
 
There is no evidence to support that the advertising campaign has changed cat 
owners opinions of the cat food (p = 0.107). Use ?prop.test to explore additional 
uses of the binomial proportions test. 
 
We could also analyse the count data in the above example as a Chi-square 
contingency table. The simplest method is to convert the tabulated table into a 2x2 
matrix using the matrix() function (note, there are many alternative methods of 
constructing a table like this) 
 
> buyers <- matrix(c(45,35,71,32), nrow= 2) 
> buyers 
     [,1] [,2] 
[1,]   45   71 
[2,]   35   32 
 
Notice that you enter the data column wise into the matrix and then specify the 
number of rows using nrow= 
 
We can also change the row names and column names from the defaults to make 
it look more like a table (you don’t really need to do this to perform a Chi-square 
test) 
 
> colnames(buyers) <- c("before", "after") 
> rownames(buyers) <- c("buy", "notbuy") 
> buyers 
       before after 
buy        45    71 
notbuy     35    32 
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You can then perform a Chi-square test to test whether the number of cat owners 
buying the cat food is independent of the advertising campaign using the 
chisq.test() function. In this example the only argument is the matrix of counts 
 
> chisq.test(buyers) 
 
        Pearson's Chi-squared test with Yates' continuity 
correction 
 
data:  buyers  
X-squared = 2.598, df = 1, p-value = 0.107  
 
There is no evidence (p = 0.107) to suggest that we should reject the null 
hypothesis that the number of cat owners buying the cat food is independent of the 
advertising campaign. You may have spotted that for a 2x2 table, this test is exactly 
equivalent to the prop.test(). You can also use the chisq.test() function 
on raw (untabulated) data and to test for goodness of fit (see ?chisq.test for 
more details). 
 
5.2 Correlation 
 
In R, the Pearson’s product-moment correlation coefficient between two 
continuous variables can be found using the cor() function. Using the trees 
data set again, we can determine the correlation coefficient of the relationship 
between tree height and volume 
 
> data(trees) 
> names(trees) 
[1] "Girth" "Height" "Volume" 
> cor(Height,Volume) 
[1] 0.5982497 
 
or we can produce a matrix of correlation coefficients for all variables in a 
dataframe  
 
> cor(trees) 
           Girth    Height    Volume 
Girth  1.0000000 0.5192801 0.9671194 
Height 0.5192801 1.0000000 0.5982497 
Volume 0.9671194 0.5982497 1.0000000 
 
Note that the correlation coefficients are identical in each half of the matrix. Also, 
be aware that, although a matrix of coefficients can be useful, a little commonsense 
should be used when using cor() on dataframes with numerous variables. It is 
not good practice to trawl through these types of matrices in the hope of finding 
large coefficients without having an a priori reason for doing so.  
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If you have missing values in the variables you are trying to correlate, cor() will 
return an error message (as will most basic statistical tests in R). You will either 
have to remove these observations or tell R what to do when an observation is 
missing. A useful argument to use in this situation is use=”complete.obs”  
 
> cor(trees, use = "complete.obs") 
 
The function cor() will return the correlation coefficient of two variables, but gives 
no indication whether the coefficient is significantly different from zero. To do this 
you need to use the function cor.test() 
 
> cor.test(trees$Height, trees$Volume) 
 
        Pearson's product-moment correlation 
 
data:  Height and Volume  
t = 4.0205, df = 29, p-value = 0.0003784 
alternative hypothesis: true correlation is not equal to 0  
95 percent confidence interval: 
 0.3095235 0.7859756  
sample estimates: 
      cor  
0.5982497 
 
Two non-parametric equivalents to Pearson correlation are available within the 
cor.test() function; Spearman’s rank and Kendall’s tau coefficient. To call 
these simply include the argument method=”spearman” or method= 
”kendall” depending on the test you wish to use. For example 
 
> cor.test(trees$Height, trees$Volume, method="spearman") 
 
        Spearman's rank correlation rho 
 
data:  Height and Volume  
S = 2089.598, p-value = 0.0006484 
alternative hypothesis: true rho is not equal to 0  
sample estimates: 
      rho  
0.5787101  
 
Warning message: 
Cannot compute exact p-values with ties in: 
cor.test.default(Height, Volume, method = "spearman") 
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5.3 Simple linear modelling 
 
To fit a linear model to your data, we use the lm() function (linear model). This 
can be used to fit simple linear (single continuous explanatory variable), multiple 
linear (multiple continuous explanatory variables), polynomial regression and 
ANOVA type models. The structure of the main argument when using the lm() 
function is specified using model formula 
 

response variable ~ explanatory variable(s) 
 
You have already come across this type of model specification in connection with 
some plotting functions (plot(), boxplot() etc) and also with the t and 
Wilcoxon’s tests. It is simply read as ‘the response variable described by (~) the 
explanatory variable(s)’. So a linear regression of y on x would be written as  
 
> lm(y~x)   
 
multiple regression with two explanatory variables (x1 and x2) 
 
> lm(y~x1+x2) # fits a regression plane 
 
multiple regression with an interaction term 
 
 > lm(y~x1*x2) 
 
quadratic regression 
 
> lm(y~I(x^2)) # the function I() tells R to treat the variable ‘as is’ and not  

# to compute the actual quantity 
 
It is important that you get to grips with model formulae (and the above is only the 
briefest of explanations) as this is the main format used by R for many different 
types of statistical analyses, including, ANOVA, generalised linear models, mixed 
effects models and generalised additive models.  
 
Ok, time for an example. The dataframe smoking summarises the results of a 
study investigating the possible relationship between mortality rate and smoking 
across 25 occupational groups in the UK. The variable occupational.group 
specifies the different occupational groups studied, smoking is an index of the 
average number of cigarettes smoked each day (relative to the number smoked 
across all occupations) and the variable mortality is an index of the death rate 
from lung cancer in each group (relative to the death rate across all occupational 
groups). 
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> smoke <- read.table("D:\\Aberdeen R-Course\\smoking.txt", 
header = TRUE) 
> names(smoke) 
[1] "occupational.group" "smoking"  "mortality"   
  
If we ignore occupational group, a scatterplot of these data is shown in Figure 5.2 
 
> plot(smoke$mortality~ smoke$smoking) 

 
Figure 5.2: The relationship between smoking and mortality rate  

 
 To fit a linear model to these data 
 
> smoke.lm <- lm(mortality~smoking, data=smoke, na.action= 
na.exclude) 
 
What we have done here is fitted a linear model and stored the results as 
smoke.lm (you can call it what you want). We have also included the argument 
data=smoke which tells R that the data for the analysis is contained within the 
dataframe smoke. The argument na.action=na.exlude tells R to exclude 
missing values (NA’s). This is important if we want to extract information from the 
model such as residuals and fitted values if our data contain missing values.. 
 
Perhaps somewhat confusingly (at least at first) it appears that nothing has 
happened, you don’t automatically get the voluminous output that you normally get 
with other statistical packages. In fact, what R does, is store the output of the 
analysis in what is known as a lm model class object (which we have called 
smoke.lm) from which you are able to extract exactly what you want using 
extractor functions. To see what elements are contained within the object use the 
str() function (or alternatively names()or attributes()) 
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> attributes(smoke.lm) 
$names 
 [1] "coefficients"  "residuals"     "effects"       "rank"          
 [5] "fitted.values" "assign"      "qr"       "df.residual"   
 [9] "xlevels"       "call"          "terms"         
"model"         
 
$class 
[1] "lm" 
 
To extract an element from the object, simply type the name of the object followed 
by a dollar sign ($) and then the name of the element. For example, to extract the 
coefficients of the regression 
 
> smoke.lm$coefficients 
(Intercept)     smoking  
  -2.885319    1.087532 
 
The above summary gives an estimate of the intercept (-2.885) and the slope 
(1.087) of the linear model. 
 
You can obtain more information about the fitted regression using the summary() 
extractor function 
 
> summary(smoke.lm) 
 
Call: 
lm(formula = mortality ~ smoking, data = smoke) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-30.107 -17.892   3.145  14.132  31.732  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  -2.8853    23.0337  -0.125    0.901     
smoking       1.0875     0.2209   4.922 5.66e-05 *** 
--- 
 
Residual standard error: 18.62 on 23 degrees of freedom 
Multiple R-Squared: 0.513,      Adjusted R-squared: 0.4918  
F-statistic: 24.23 on 1 and 23 DF,  p-value: 5.658e-05 
 
This shows you everything you need to know about the parameter estimates, their 
standard errors and associated t tests and p values. It also gives you an idea of 
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the distribution of the residuals which can be used to check for the assumptions of 
normality  
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-30.107 -17.892   3.145  14.132  31.732  
 
and the R2, adjusted R2 , F statistic, associated degrees of freedom and p value 
(tests the hypothesis that the regression coefficient is zero). 
 
If you would prefer to see the ANOVA table rather than the parameter estimates 
then you can use the anova() function 
 
> anova(smoke.lm) 
            Df Sum Sq Mean Sq F value    Pr(>F)     
smoking      1 8395.7  8395.7  24.228 5.658e-05 *** 
Residuals   23 7970.3   346.5                       
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1  
 
Finally, we can quickly add the fitted regression line to the scatterplot (Figure 5.3) 
using the abline() function: 
 
> abline(smoke.lm) # alternatively abline(-2.885,1.087) 

 
Figure 5.3: Relationship between mortality and smoking with fitted line included 

 
Before accepting the results of the linear model it is important to check the 
assumptions of constancy of variances and normality of errors. To check for 
constancy of variances we can construct a graph of residuals versus fitted values 
(Figure 5.4) using the resid() and fitted() functions 
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> plot(resid(smoke.lm) ~ fitted(smoke.lm)) 
> abline(h=0)  # includes a horizontal line at y=0 for reference 

 
Figure 5.4: residuals versus fitted values from the model smoke.lm 

 
It takes a little practice to interpret these types of graph, but what you are looking 
for is no pattern or structure in your data points. What you definitely don’t want to 
see is the scatter increasing as the fitted values get bigger (this has been described 
as looking like a trumpet or a wedge of cheese).  
 
To check for normality of errors we can use the Q-Q plot (Figure 5.5) which was 
introduced in section 5.1.  
 
> qqnorm(resid(smoke.lm)) 
> qqline(resid(smoke.lm))  

 
Figure 5.5: Q-Q plot of the residuals of the model smoke.lm 
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Alternatively, you can get R to do most of the hard work for you by using the 
plot() function on the model itself. Before we do this we should tell R that we 
want to plot four graphs in the same plotting window  
 
> par(mfrow=c(2,2)) # plots 2 graphs in 2 rows  
> plot(smoke.lm) # produces 4 diagnostic plots 

 
Figure 5.6: model diagnostic plots produced using the plot() function 

 
The first two graphs (top left and top right) are the same residual versus fitted and 
Q-Q plot we produced before. The third graph (bottom left) is the same as the first 
but produced on a different scale (the absolute value of the square root of the 
standardised residuals) and again you are looking for no pattern or structure in the 
data points. The fourth graph (bottom right) gives you an indication whether any of 
your observations are having a large influence (Cook’s distance) or leverage on 
your regression coefficient estimates.  From the above graphs you can see that 
points 2 and 25 appear to have the most leverage and also a Cook’s distance close 
to 0.5 and would warrant closer examination. You can access what these values 
represent by  
 
smoke[2,] 
       smoking mortality 
Miners     137       116 
> smoke[25,] 
              smoking mortality 
Professionals      66        51 
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What you do about influential data points or data points with high leverage is up to 
you. If you would like to examine the effect of removing one of these points on the 
parameter estimates you can use the update() function. To remove data point 2 
(miners, mortality = 116 and smoking = 137) and store the results of the regression 
in a new object called smoke.lm2 
 
> smoke.lm2 <- update(smoke.lm, subset = -2) 
> summary(smoke.lm2) 
 
Call: 
lm(formula = mortality ~ smoking, data = smoke, subset = 
(mortality != 116), na.action = na.exclude) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-29.7425 -11.6920  -0.4745  13.6141  28.7587  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept) -20.0755    23.5798  -0.851    0.404     
smoking       1.2693     0.2297   5.526 1.49e-05 *** 
--- 
 
Residual standard error: 17.62 on 22 degrees of freedom 
Multiple R-Squared: 0.5813,     Adjusted R-squared: 0.5622  
F-statistic: 30.54 on 1 and 22 DF,  p-value: 1.488e-05 
 
There are numerous other functions which are useful for producing diagnostic 
plots. For example, rstandard() and rstudent() returns the standardised and 
studentised residuals. The function dffits() expresses how much an 
observation affects the associated fitted value and the function dfbetas() gives 
the change in the estimated parameters if an observation is excluded, relative to 
its standard error (intercept is the solid line and slope is the dashed line in the 
example below). The solid bold line in the same graph represents the Cook’s 
distance. Again, all three graphs indicate that observation two is having a large 
effect on the parameter estimates. Examples of how to use these functions are 
given below and Figure 5.7 
 
> par(mfrow=c(2,2)) 
> plot(dffits(smoke.lm), type="l") 
> plot(rstudent(smoke.lm)) 
> matplot(dfbetas(smoke.lm), type="l", col="black") 
> lines(sqrt(cooks.distance(smoke.lm)), lwd=2) 
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Figure 5.7: Further regression diagnostics 

 
A list of other useful functions for model simplification and validation is shown in 
the table below 
 
add1 tests successively all the terms that can be added to a model 
drop1 tests successively all the terms that can be removed from a 

model 
step selects a model with AIC (calls add1 and drop1) 
anova computes a table of analysis of variance or deviance for one or 

several models 
predict computes the predicted values for new data from a fitted model 
update re-fits a model with a new formula or new data 

 
5.4 Other statistical tests 
 
As with most things R related, a complete description of the variety and flexibility 
of different statistical analyses you can perform is beyond the scope of this 
introductory text. Further information can be found in any of the excellent 
documents referred to on page 11. A table of some of the more common statistical 
functions is given below, most of which are used in a similar fashion to lm() 
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aov fits an Anova type model to your data  
glm fits a generalised linear model with a specific error 

structure specified using the family= directive (poisson, 
binomial, gamma) 

gam fits a generalised additive model  
lme & nlme fits linear and non-linear mixed effects models. The 

package nlme must be installed  
lmer fits linear and generalised linear and non-linear mixed 

effects models. The package lme4 must be installed 
gls fits generalised least squares models.  The package nlme 

must be installed  
kruskal.test performs a Kruskal-Wallis rank sum test 
friedman.test performs a Friedman’s test 
ks.test performs a Kolmogorov-Smirnov test 
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6.0  Programming in R 
 
One of the beauties of working in a statistical programming environment rather 
than with a statistical software package is the ability to modify and extend existing 
functions or create your own. R is a fully fledged programming language, and 
indeed, most of the functions supplied as part of the R system are themselves 
written in R. Learning how to write compact and elegant functions deserves its own 
workshop, so I will merely introduce you to some basic programming concepts that 
will enable you to use R more effectively in your day to day data analysis. If you 
are interested in learning more about programming in R there are many useful free 
guides on the R-Project website. 
 
6.1 Functions in R 
 
Functions in R are objects of the class function and are used to carry out operations 
on arguments that are supplied to them. Once the function has been executed it 
will return one or more values. A function is defined by an assignment of the form 
 
> name <- function(argument1, argument2,…) {expression} 
 
The first thing to note is that you use the function function() to tell R that you 
want to create a new function. Here we want to create a function called name.  The 
second component of the assignment is a list of comma separated arguments (or 
a single argument) which the expression part of the function uses to calculate a 
value (or values). The expression can be any valid R command or set of R 
commands and is usually contained between the braces {} (if a function is only 
one line long you can omit the braces). You can then use your new function by 
typing 
 
> name(exp1, exp2) 
 
exp1 and exp2 are values you wish to supply to the arguments. Confused? Lets 
have a couple of examples to clarify. Suppose we want to create a function to 
convert centimetres to inches 
 
> cm.to.inches <- function(values) {  # start of expression 

values/2.54  # divide the values by 2.54 
  }    # end of expression 
 
The code above creates a function called cm.to.inches and will take any 
inputted value(s) and divide them by 2.54. Notice that in this case you don’t have 
to tell R to print the output as the function will return the last value of the expression 
by default (there is only one here). 
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To use the function to convert 25 cm to inches simply type 
 
> cm.to.inches(25)  
[1] 9.84252 
 
We can even use our function on vectors (or matrices, arrays etc) of data just like 
many other functions (see section 2.3 for more on vectorisation) 
 
> dat <- c(25,45,60,100)  # create a vector 
> cm.to.inches(dat) 
[1]  9.84252 17.71654 23.62205 39.37008 
 
> mat.1 <- matrix(sample(1:9, 9), nrow = 3) # create a matrix 
> mat.1 
 
> cm.to.inches(mat.1) 
          [,1]      [,2]     [,3] 
[1,] 3.5433071 1.9685039 2.755906 
[2,] 0.7874016 0.3937008 1.574803 
[3,] 3.1496063 1.1811024 2.362205 
 
Ok, let’s have another example. Suppose we want to create a function to calculate 
the standard error of the mean of a vector of data. Remember the formula for 
calculating the standard error of the mean ( ) 
 

 

 
Where s2 is the variance and n is the sample size. 
 
For convenience the function will use other functions such as sqrt(), var() and 
length() to calculate the formula values 
 
std.error <- function(values) { # start  
 sqrt(var(values)/length(values)) # perform the calculations 
} # end  
 
Let’s create some data to test our function. We can use the function rnorm() to 
draw 10 values at random from a normal distribution with a mean of 4 and a 
standard deviation of 1 
 
> dat.2 <- rnorm(10, mean = 4, sd = 1) 
> dat.2 
[1] 2.800171 3.537712 3.823953 5.522421 4.601793 3.742070 5.026819 5.754747   
[9] 5.056334 3.557781 
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To test the function  
 
> std.error(dat.2) 
[1] 0.3109732 
 
You can also use your own functions with existing functions such as apply(), 
sapply(), tapply() and lapply() (section 3.4). To test this out, lets create a 
dataframe  
 
> y <- rnorm(15, 7, 14)       # generate some data  
> x <- gl(3,5, labels = c("one", "two", "three")) 
> dataf <- data.frame(y, x) # combine x and y into a dataframe 
> str(dataf)          # check the attributes of our dataframe 
 
'data.frame':   15 obs. of  2 variables: 
 $ y: num  13.38 12.15 16.42 34.03  5.64 ... 
 $ x: Factor w/ 3 levels "one","two","three": 1 1 1 1 1 2 2  
 
now to try out our function to calculate the standard errors of y for each level of x 
 
> tapply(dataf$y, dataf$x, std.error) 
 
     one      two    three  
4.764027 3.834459 3.837727 
 
A slightly more involved example would be to create a function that we can use to 
assess whether a vector of data is normally distributed. This function should 
calculate some summary statistics such as the mean and sample quantiles, 
perform a test for normality and finally generate some useful diagnostic plots 
 
norm.sum <- function(values){ 
 m <- mean(values) 
 quant <- quantile(values) 
 st.result <- shapiro.test(values) 

print(paste("mean:", m, sep = " "), quote = FALSE)  
print("quantiles:", quote = FALSE) 
print(quant) 
print(st.result) 

 par(mfrow = c(1,2)) 
 hist(values) 
 qqnorm(values) 
 qqline(values, lty = 2, col = "red") 
} 
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The code above looks a little complicated, however if you break it down into its 
constituent components it’s all fairly straight forward. After the start of the 
expression the first three lines of code calculate and then store the mean, the 
sample quantiles and the results of a Shapiro-Wilk normality test of the inputted 
values 
 

m <- mean(values) 
 quant <- quantile(values) 
 st.result <- shapiro.test(values) 
 
The next four lines tell the function to print the stored values calculated above to 
the console using the print() function. If you didn’t include these print 
commands the function would only return the last value calculated with the 
function. The quote = FALSE argument suppresses the quotes normally placed 
around a character string when printing (see what happens when you remove this 
argument).  The paste() function literally pastes together different variables 
before printing. In the example above the paste() function pastes together the 
character string "mean: " and the value of m (the mean) and separates them with 
a space as determined by the sep = " " argument. If you didn’t want a space 
you could specify sep = "". 
 

print(paste("mean:", m, sep = " "), quote=FALSE)  
print("quantiles:", quote = FALSE) 
print(quant) 
print(st.result) 

 
The remaining four lines simply split the plotting device into 1 row and two columns 
(section 4.3), plots a histogram (section 4.1) of the values in the first column and 
a quantile-quantile plot (section 5.1) in the second column.  
 

par(mfrow = c(1,2)) 
 hist(values) 
 qqnorm(values) 
 qqline(values, lty = 2, col = "red") 
 
To test the function we need to generate some data. We will use the rnorm() 
function again 
 
 
 
> dat.3 <- rnorm(100, 25, 10) # take 100 samples from a normal  

      # distribution with mean of 25 and standard 
      # deviation of 10 
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To use the function 
 
> norm.sum(dat.3) 
[1] mean: 25.8569533144522 
[1] quantiles: 
       0%       25%       50%       75%      100%  
 5.403534 19.794108 26.005416 32.286889 53.328408  
 
       
  Shapiro-Wilk normality test 
 
data:  values  
W = 0.9924, p-value = 0.8462 
 

 
 
You can also provide your function with default arguments which will be used if 
you don’t specify a value for an argument. For example, the following function 
takes two values (x and y) and adds them together and also adds x to 2*y. It 
stores the results of these two calculations as a list. Lists are often a very 
convenient structure to store the output of functions. The default values of x and y 
are 3 and 2 respectively   
 
f1 <- function(x = 3, y = 2) { 
  z1 <- x + y 
  z2 <- x + 2*y 
  list(result1 = z1, result2 = z2) 
} 
If you don’t provide any arguments to this function it will perform the calculations 
using the default values 
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> f1() 
$result1 
[1] 5 
 
$result2 
[1] 7 
 
You can change the default values by specifying them directly 
 
> f1(x = 1, y = 5) 
$result1 
[1] 6 
 
$result2 
[1] 11 
 

6.2 Looping and flow control 
 

R is very good at performing repetitive tasks. If we want a set of operations to be 
repeated several times we use what is known as a loop. The computer will execute 
the instructions in the loop a specified number of times or until a specified condition 
is met. Once the loop is complete, the computer moves on to the section of code 
immediately following the loop. There are three main types of loop in R: the for 
loop, the while loop and the repeat loop. In general loops are implemented very 
inefficiently in R and should be avoided whenever possible especially with large 
datasets. However, a loop is sometimes the only way to achieve the result we want. 
The most commonly used loop structure when you want to repeat a task a defined 
number of times is the for loop. A simple example is 
 
for(i in 1:5) { 
 print(i + 10) 
} 
 
[1] 11 
[1] 12 
[1] 13 
[1] 14 
[1] 15 
 
The for loop uses an index (i in this case) which can take on each value in a 
vector (1:5) successively and use the value to perform a specific task such as 
adding 10 to the value in the example above. The for loop will repeat as many 
times as there are values in the vector. As with functions, the R code in the main 
body of the loop should be placed between curly brackets unless it is only one line 
long.   
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An example where a for loop is useful is when you want to bootstrap. Let’s return 
to the trees dataset used in section 5.1 (page 67). Previously, we performed a 
one sample t test to examine whether the mean height of black cherry trees was 
significantly different from 70 ft. An alternative approach that does not make any 
distributional assumptions would be to resample the height data (with replacement) 
many times and calculate a mean for each resample – this is known as 
bootstrapping. We can then obtain a 95 % confidence interval around the 
resampled means by looking at their distribution and calculating the proportion of 
resampled means that fall between 0.025 and 0.0975. In this example we would 
like to ask how likely is it that our population mean estimated from 10000 
resamples differs from 70 ft.  
 
First,  make the trees dataframe available in the workspace  
 
data(trees) 
 
Now we construct the for loop to take 10000 samples from the height data, 
calculate and store the mean of each resample and finally to plot a histogram of 
the mean values 
 
a <- numeric(10000) 
for(i in 1:length(a)){ 
 a[i] <- mean(sample(trees$Height, replace = T)) 
} 
hist(a, main = "") 
 
The first line of the above code creates a variable a of size 10000 to store the 
resampled mean values. The second line initiates the for loop so that it will loop 
over all values from 1 to 10000 (length(a)) successively. The main body of the 
loop resamples the trees$Height variable with replacement (you must specify 
this as the default value for the sample function is without replacement), calculates 
the mean and then stores it in a in the element specified by a[i]. So during the 
first loop, i is 1 and the mean of the first resample is stored in the first element of 
a, the second loop stores the mean in a[2] and so on until a[10000]. The final 
line plots a histogram of the mean values.  
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As you can see from the plot above the test value of 70 isn’t even on the scale. It 
is therefore likely that the mean height of black cherry trees is significantly different 
from 70 ft.  
 
To calculate the 95% confidence intervals of our resampled means you can use 
the quantile() function and specify the intervals 0.025 and 0.975 with c(0.025 
, 0.975).  The abline() function can then be used to plot the confidence 
intervals on the histogram. 
 
> quantile(a, c(0.025, 0.975)) 
 
    2.5%    97.5%  
73.77419 78.19355 
 
> abline(v = 73.77, lty = 2) 
> abline(v = 78.19, lty = 2) 
 
The 95 % confidence intervals support our initial impression gained from looking 
at the histogram as the test value of 70 does not fall between 73.77 and 78.19. 
They are actually quite close to the confidence intervals estimated with the t test  
 
> t.test(trees$Height, mu = 70) 
 
        One Sample t-test 
 
data:  trees$Height  
t = 5.2429, df = 30, p-value = 1.173e-05 
alternative hypothesis: true mean is not equal to 70  
95 percent confidence interval: 
 73.6628 78.3372  
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If you really want to calculate the p value of the bootstrap sample (not really 
necessary here as it’s so obvious), first calculate the p value for both one tailed 
tests  
 
p1<-sum(a < 70)/10000 # H_A: true mean is greater than 70 
p2<-sum(a > 70)/10000 ## H_A: true mean is smaller than 70 
> p1 
[1] 0 
> p2 
[1] 1 
 
And then calculate the p value for the two tailed tests 
 
p3<-2*min(p1, p2) # H_A: true mean differs from 70 
 
> p3 
[1] 0 # highly significant 

Another type of loop that you might use is the while loop. The while loop is used 
when you want to keep looping as long as a specific logical condition is 
satisfied. The basic structure of the while loop is 

while(logical condition){ commands } 

An simple example of a while loop is  
 
i <- 2  
while(i <= 4) { 
      i <- i + 1 
      print(i) 
      } 
 
[1] 3 
[1] 4 
[1] 5 
 
Here the loop will only continue to pass values to the main body of the loop when 
i is <= 4. Once i is greater than 5 the loop will stop. R also has another method 
for looping, the repeat loop. This type of loop is used much more rarely and is 
not discussed further here. 
 
In addition to the various types of loops there are also a number of conditional 
statements that can be used to control the flow of your R program. The if 
statement is probably the most commonly used conditional statement and take one 
of two general forms: 
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if(logical condition)  command 
 
or 
 
if(logical condition)  command else alternative.command 
 
In both forms, if the first element of logical condition evaluates to TRUE then 
command is evaluated and the value returned. In the first form, if the logical 
condition evaluates to FALSE then either 0 or NULL is returned. In the second 
form, if logical condition evaluates to FALSE then the alternative 
command is evaluated and its value returned. 
 
For example, say we want to write a function that returns the absolute value of a 
number. One way of doing this is 
 
Abs <- function(x){ 
 if(x < 0) -x else x 
} 
 
The above function first evaluates whether the value of x is less than zero. If x is 
less than zero then it returns the negative of x (which is a positive), if x is greater 
than zero then it returns the value of x. To test it 
 
> Abs(-20) 
[1] 20 
> Abs(20) 
[1] 20 
 
If we try our function on a vector of data as we have done with some of our other 
functions, things don’t go as expected 
 
> Abs(-3:3) 
[1]  3  2  1  0 -1 -2 -3 
Warning message: 
In if (x < 0) -x else x : 
  the condition has length > 1 and only the first element will be used 
 
What has happened is that the first element (-3) in the condition x < 0 controls 
the action taken for the rest of the elements. As the first condition is TRUE (-3 < 0) 
–x is returned for the rest of the elements in the vector. To overcome this issue 
you can either write a for loop which iterates over each element of the vector 
(maybe have a go at this) or you can use the ifelse() function that can evaluate 
a conditional statement over a vector.  
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The general form of ifelse() is 
 
ifelse(vector condition, true vector, false vector) 
 
The three arguments of the ifelse() function are all vectors of the same length. 
Whenever an element of vector condition is TRUE, the corresponding 
element of the true vector is selected, when vector condition is FALSE, 
the corresponding element of the false vector is returned.  
 
So to return to our example 
 
Abs2 <- function(x){ 
 ifelse(x < 0, -x, x) 
} 
 
> Abs2(-3:3) 
[1] 3 2 1 0 1 2 3 
 
Perhaps more usefully we could use the ifelse()function to recode elements in 
a vector (or dataframe) based on some logical criteria. For example, we want to 
convert a continuous or integer variable into a number of levels of a factor  
 
Let’s create some simple data to play with 
 
> a <- seq(1,10, 0.5) 
[1]  1.0  1.5  2.0  2.5  3.0  3.5  4.0  4.5  5.0  5.5  6.0  6.5  7.0  7.5  
8.0  8.5 9.0  9.5 10.0 
 
We want to recode all the values in a less than or equal to 4 as “small”, greater 
than or equal to 8 as “large” and the rest as “medium”.  We will want to do this with 
other datasets so we’ll write a function 
 
recode.1 <- function(x){ 
   ifelse(x <= 4,"small",  
   ifelse(x >= 8, "large", "medium")) 
} 
 
Notice that two ifelse() functions are used, one nested inside the other. This 
reads as follows; if x <= 4 is TRUE return "small", if FALSE then proceed to 
the next ifelse() function which reads if x >= 8 TRUE return "large", if 
FALSE return "medium". 
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Now we can test the function 
 
> z <- recode.1(a) 
> z 
 [1] "small"  "small"  "small"  "small"  "small"  "small"  "small"  
"medium" "medium" 
[10] "medium" "medium" "medium" "medium" "medium" "large"  "large"  
"large"  "large"  
[19] "large"  
 
Combine a and z as a dataframe and check whether the function has worked and 
whether R has converted z to a factor with three levels 
 
> dataf <- data.frame(a, z) 
> dataf 
      a      z 
1   1.0  small 
2   1.5  small 
3   2.0  small 
4   2.5  small 
5   3.0  small 
6   3.5  small 
7   4.0  small 
8   4.5 medium 
9   5.0 medium 
10  5.5 medium 
11  6.0 medium 
12  6.5 medium 
13  7.0 medium 
14  7.5 medium 
15  8.0  large 
16  8.5  large 
17  9.0  large 
18  9.5  large 
19 10.0  large 
 
> str(dataf) 
'data.frame':   19 obs. of  2 variables: 
 $ a: num  1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 ... 
 $ z: Factor w/ 3 levels "large","medium",..: 3 3 3 3 3 3 3 2 2 2 ... 
 

As mentioned at the beginning of this section, programming in R deserves its own 
workshop and manual. I have only touched on some of the bare essentials to get 
you going, and even then very briefly. If you are interested in R programming then 
more information can be found in the R language definition pdf on the R-Project 
website. Another useful text is Venables and Ripley’s book on S Programming 
published by Springer.    
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7.0  A final word 
 
I hope that after reading this guide, completing the practical exercises and 
attending the course I have equipped you with some of the basic skills to enable 
you to start using R for your own data handling and analysis – or at least made 
you aware of some of the possibilities of what you can do! It has probably been 
intense, but hopefully enjoyable. Don’t worry if you can’t remember everything you 
have learned, just refer back to the notes and scripts you have made during the 
course and in time it will get easier. As is natural in any short course, there are far 
too many things to cover and not enough time to include all of them. Therefore, I 
would strongly encourage you to invest in a good book or even better download 
some of the many excellent free guides available on the web which contain a 
wealth of information on this subject and many others. Finally, if you mention R in 
a publication please cite the original reference (use the function citation()): 
 
R Core Team (2019). R: A language and environment for 
statistical computing. R Foundation for Statistical 
Computing,Vienna, Austria. URL https://www.R-project.org/. 
 
If you want to cite a specific R package that you have used for your analyses 
then include the package name in the citation function: 
 
> citation(package="lme4")  
 
To cite lme4 in publications use: 
 
Douglas Bates, Martin Maechler, Ben Bolker, Steve Walker 
(2015). Fitting Linear Mixed-Effects Models Using lme4. 
Journal of Statistical Software, 67(1), 1-48. 
doi:10.18637/jss.v067.i01. 
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abline(), 62, 94 
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alternative=”less”, 68 
anova(), 80, 84 
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available.packages(), 12 
 	
bmp(), 66 
boxplot(), 48 
break=, 47 
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cbind(), 39 
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chisq.test(), 75 
citation(), 99 
class(), 25 
col=, 60 
col=as.numeric, 61 
colnames(), 37, 74 
conf.level=, 68 
coplot(), 54 
cor.test(), 76 

cor(), 75 
 	
data.frame(), 89 
data(), 36, 93 
data=, 78 
demo(graphics), 43 
density(), 48 
dev.off(), 66 
dfbetas(), 83 
dffits(), 83 
diag(), 37 
dotchart(), 50 
drop1(), 84 
 	
else, 96 
exp(), 18 
expression, 59 
 	
factor(), 35 
family=, 85 
file="clipboard", 41 
fitted(), 80 
font=, 63 
for(), 92 
foreign, 30 
freq=FALSE, 47 
friedman.test(), 85 
function(), 87 
 	
gam(), 85 
getwd(), 13 
gl(), 89 
glm(), 85 
graphical parameters, 59 
 	
header=TRUE, 29 
help.search(“”), 9 
help.start(), 10 
help(""), 9 
help(), 8 
hist(), 46 
 	
if(), 95 
ifelse(), 96, 97 
install.packages(), 12 
installed.packages(), 12 
is.character(), 26 
is.complex(), 26 
is.factor(), 26, 35 
is.logical(), 26 
is.numeric(), 25, 26 
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jpeg(), 66 
 	
kruskal.test(), 85 
ks.test(), 85 
 	
lapply(), 36, 40, 89 
legend(), 62 
length(), 20, 88, 93 
library(), 12 
library(lattice), 56 
list(), 36, 39, 91 
lm(), 77 
lme(), 85 
lme4, 85 
lmer, 85 
load(), 24 
locator(), 61 
log(), 18 
log10(), 18 
lower.panel=, 54 
ls(), 23 
 	
main=””, 59 
matplot(), 83 
matrix(), 37, 74, 88 
mean(), 20 
method=”kendall”, 76 
method=”spearman”, 76 
mfrow=, 64 
mtext(), 63 
mu=, 67 
 	
na.action= na.exclude, 78 
na.rm=T, 35 
na.strings=””, 30 
names(), 31, 40 
nlme(), 85 
nrow=, 74 
numeric(), 93 
 	
order(), 22, 33 
 	
paired=T, 72 
pairs(), 51 
panel.cor(), 53 
panel=panel.smooth, 52 
par(), 64 
paste(), 89, 90 
pch=, 59, 60 
pch=as.numeric, 61 
pdf(), 66 

pi, 18 
plot(), 43 
plot(model), 82 
plot(X,Y), 44 
plot(Y~X), 44 
png(), 66 
points(), 60 
predict()t, 84 
print(), 89, 90 
prop.test(), 73 
 	
q(), 14 
qqline(), 69 
qqnorm(), 69 
quantile(), 89, 94 
 	
range(), 20 
rbind(), 39 
read.csv(), 30 
read.csv2(), 30 
read.delim(), 30 
read.fwf(), 30 
read.table(), 29 
rep(), 19 
repeat(), 95 
resid(), 80 
rev(), 21 
rm(), 23 
rm(list=ls()), 23 
rnorm(), 88, 90 
row.names=, 29 
row.names=F, 41 
rownames(), 37, 74 
RSiteSearch(), 10 
rstandard(), 83 
rstudent(), 83 
rug(), 49 
 	
sample(), 88 
sapply(), 36, 89 
save.image(), 24 
sd(), 20 
select=, 34 
sep=",", 41 
seq(), 19 
setwd(), 13 
shapiro.test(), 70 
sort(), 21 
sqrt(), 18, 88 
step(), 84 
str(), 31 
subset(), 34 
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summary(), 20, 34 
 	
t.test(), 67, 94 
t(), 37 
tapply(), 35, 89 
text(), 63 
tiff(), 66 
type=””, 45 
type=”n”, 46, 60 
 	
update, 84 
update.packages(), 12 
update(), 83, 84 
upper.panel =, 54 
use=”complete.obs”, 76 

 	
var.equal=T, 71 
var.test(), 71 
var(), 20, 88 
 	
while(), 95 
Wilcox.test(), 67 
with(), 44 
write.table(), 41 
 	
xlab=””, 59 
xlim=, 59 
xyplot(), 56 
 	
ylab=””, 59 
ylim=, 59 
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