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Note: The first 6 questions in this practical are the same questions that you answered in the case
study group work where you identified issues of residual heterogeneity of variance and residual
non-independence when fitting a standard linear model to these data. You can either add to your
previous R markdown document (recommended) when completing this exercise or you can create
a new R markdown document which only contains your answers to questions 7 onwards (don’t
forget though that you will need to import the Hediste.txt dataset again and perform any data
transformations required.)

If you would prefer to work from the pdf version of this document you can find this here.

Strap yourself in, this is a rather long exercise (but worth it I hope!).

Environmental impacts on Hawaiian black-necked stilt abundance

These data were collected from bird surveys conducted on two Hawaiian islands (Maui and Oahu)
from 1956 - 2003. The annual abundance of black-necked stilts (Himantopus mexicanus knudseni)
was measured each winter using transect surveys on each island. Along with bird counts, annual
rainfall data for the region was also obtained from the National Climate Data Center. The re-
searchers were interested in understanding whether levels of rainfall impacted on bird abundance
and whether any impact was different between the two islands.

1. Create a new R markdown document in your BI5302 RStudio project and save it using a suitable
file name. I suggest you specify the default output format as html but feel free to experiment with
pdf (you can always change this later). Use this R markdown document to record your data
exploration, statistical analysis (including graphs and tables) and commentary. For this exercise I
would also suggest that you embed your R code as visible chunks within the document (use echo
= TRUE) for later reference.
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2. Import the hawaii3.txt dataset into R and assign it to a suitably named variable. Examine
the structure of the dataframe. Remember if you’re using R version > 4.0.0 (most of you will be)
then columns containing character strings will be imported into R as character type variables not
as factors by default. You can either use the argument stringsAsFactors = TRUE when you use
the read.table() function to automatically convert character type variables to factors when you
import your data or you can use the read.table() function without the stringsAsFactors =
TRUE argument and then covert them after you import your data.

3. How many observations are there for each island?

4. Explore these data graphically. Are there any obvious outliers in the abund variable for each of
the locations variable levels (perhaps the dotchart() function with the group argument might
help)? Next, use an xyplot (from the lattice package) or a coplot to explore any relationships
between bird abundance and rainfall for each of the two islands Finally, create a plot to examine
how bird abundance changes over time (year) for each of the two islands.

5. With reference to the study aims stated above, fit an appropriate linear model to these data
using the lm() function.

6. Use appropriate residual plots to identify whether the modelling assumptions are met. Display
the usual residual diagnoatic plots. Don’t forget to also plot the residuals from this model against all
explanatory variables (including year). Can you see any problems? Can you assume homogeneity
of variance of the residuals from your model? If not, then try to identify the cause of this problem.
Can you assume independence of your residuals? Make sure you describe and discuss this process
in your R markdown document.

7. Import the nlme package into R.

8. Use the gls() function from the nlme package without any variance covariates or correlation
structures to refit your linear model specified above (the model you fitted using the lm() function).
This GLS model is equivalent to a standard linear model. You will use this GLS model to com-
pare with models you subsequently fit. Store your GLS model in an object with a suitable name
(birds_gls1 or similar).

9. OK, let’s try to deal with the heterogeneity of variance issue we identified in Q6 above. Remem-
ber, it looks like the cause of our heterogeneity of variance was due to differences between location.
Hopefully you remember how to deal with this situation using the varIdent variance covariate
and the weights = argument when fitting a GLS model. Fit this model and call it something like
birds_gls2.

10. Compare the birds_gls1 and birds_gls2 models using AIC to identify the ‘best’ model.
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11. Extract the residuals using the resid() function from this model and plot against the the
location variable to check whether this model has sorted out the issue of heterogeneity of variance
between our two islands. Don’t forget to use the argument type = "normalized" to extract the
normalised residuals form the GLS model.

12. OK, now that we’ve dealt with the heterogeneity of variance issue, its time to look at whether
the residuals are independent. Use the extracted residuals from Q11 and plot these over time (year)
for both of the island (locations). You can use either the xyplot() function from the lattice
package or the coplot() function from base R.

13. So now that we’ve identified non-independence in our residuals we need to decide what type
of correlation structure to use in our GLS model to account for this non-independence. One of the
best ways of doing this is to use the acf() function to plot the autocorrelation function and the
pacf() function to plot the partial autocorrelation function on our residuals.

14. Fit a new GLS model that incorporates both our variance covariate to deal with heterogeneity
of variance and also a first order autoregressive correlation structure to deal with non-independence
in our residuals at each site. Remember to include this AR(1) structure you will need to use the
corAR1 function and the correlation = argument. The form of the corAR1 structure should
include the year variable conditional (|) on the location. Assign your model to an appropriately
named object (birds_gls3?).

15. Now that we’ve fitted our model let’s once again extract our residuals and plot them against
year for each location to see if the first order autoregressive correlation structure has dealt with
our non independence. You should also re-plot the ACF and PACF plots.

16. Compare all of your fitted models so far using AIC. Which model has the most support?

17. So, now that we’ve dealt with the main issues of residual variance heterogeneity and non-
independence it’s time to turn our attention to performing model selection of our explanatory
variables (remember this is the fixed part of the model). However, before we can perform model
selection we must first refit our model using maximum likelihood (ML) rather than restricted
maximum likelihood (REML) which is the default. To do this we refit the model using the gls()
function once again but this time include the argument method = "ML".

18. Now we can perform model selection using either AIC or by performing a likelihood ratio test
(LRT). It’s up to you how you want to perform this. If you want to automate this process you
can use the drop1() function, but remember you need to use this sensibly and with care and don’t
forget about the biology! If you use the argument test = "none" with the drop1() function this
will return the AIC values for each iteration. Conversely, if you use the argument test = "Chisq"
this will return the LRT statistics. Alternatively you can just use the AIC() function.
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19. Once you have determined your minimum adequate model, refit this model using REML once
again (remember, this is the default for the gls() function).

20. Almost there! Now that we’ve determined our minimum adequate model we now need to
revalidate the model using our usual residuals plots.

21. Now that we’re happy with our model it’s time to see what the model is telling us. Use the
summary() function with our final model to obtain the parameter estimates. What is the estimate
of the residual variance for Maui and Oahu? (hint: take a look at the Variance function section
of the output - you will need to do a little maths!).

22. Once again looking at the output of the summary table what is the estimate of the correlation
of residuals at lag 1, 2 and 3?

23. OK, let’s finish this beast! Take a look at the parameter estimates and see if you can figure out
what they are telling you. What does the intercept parameter represent? What do the rainfall
and locationOahu parameters represent?

24. A picture paints a thousand words as they say, so finally, let’s create a graph of our predicted
values along with 95 % prediction intervals. There are many ways to do this but perhaps the easiest
way to also contain the standard errors of the fitted values is to use the predictSE() function from
the AICcmodavg package (you will need to install this). You use the predictSE() function in
much the same way as you would use the standard predict() function. See ?predictSE() for
more details about this function. Note, this approach is not ideal as the standard errors from the
predictSE() function do not take into account the correlation or the variance structure.

[End of exercise]

If you want to work alongside my solutions you can find the relevant files below. Download the R
markdown file and open it in your RStudio project.

• Dealing with non-independence R markdown file

• Dealing with non-independence final rendered html file

• Dealing with non-independence final rendered pdf file
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GLS_temporal_nonindependence_report.Rmd
GLS_temporal_nonindependence_report.html
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